Abstract

We theoretically analyze and experimentally demonstrate a method of generating equal-amplitude optical comb exploiting multi-frequency phase modulation. The theoretical analysis shows that 4n-1 equal amplitude spectral lines can be obtained when the modulation signal comprises n frequency components including the fundamental frequency and the odd harmonic frequencies, and 2n+1 equal-amplitude spectral lines can be obtained when the modulation signal comprises n frequency components including the fundamental frequency and the even harmonic frequencies. Then, we numerically simulate the spectra of 5, 7, 9, and 11 equal-amplitude spectral lines, respectively, which are also obtained in experiments with frequency separation of 30 MHz and flatness of better than 0.3 dB.

© 2010 Chinese Optics Letters

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription