Abstract

To overcome the shortcomings of traditional image restoration model and total variation image restoration model, we propose a novel Hopfield neural network-based image restoration algorithm with adaptive mixed-norm regularization. The new error function of image restoration combines the L2-norm and L1-norm regularization types. A method of calculating the adaptive scale control parameter is introduced. Experimental results demonstrate that the proposed algorithm is better than other algorithms with single norm regularization in the improvement of signal-to-noise ratio (ISNR) and vision effect.

© 2009 Chinese Optics Letters

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription