Abstract

A two-dimensional (2D) optimized nanotaper mode converter is presented and analyzed using the finite-difference time-domain (FDTD) method. It can convert the mode size in a silicon pillar waveguide (PWG) from 4 \mum to 1 \mum over a length of 7 \mum and achieve a transmission efficiency of 83.6% at a wavelength of 1.55 \mum. The dual directional mode conversion of the nanotaper and its ability to perform mode compression and expansion are also demonstrated. The broadband with high transmittance is satisfied in this structure. Using this silicon-based nanotaper, mode conversion between integrated photonic devices can be more compact and efficient.

© 2009 Chinese Optics Letters

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription