Abstract

An analysis of splice loss between photonic crystal fibers (PCFs) and conventional single-mode fibers (SMFs) is presented at bending and straight conditions, by using scalar effective index method (SEIM), vectorial effective index method (VEIM), and finite-difference frequency domain (FDFD) methods. It is shown that when there is a slight bending at the vicinity of splice joint, the spot size increases sharply at higher frequencies. On the basis of the obtained results, a mechanism to optimize the splice loss between PCFs and conventional SMFs, both with any geometry, is suggested. The results can be utilized for PCF-based devices to be jointed to SMF as a transmission medium.

© 2009 Chinese Optics Letters

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription