Abstract

We investigate the spectral approaches to the problem of point pattern matching, and present a spectral feature descriptors based on partial least square (PLS). Given keypoints of two images, we define the position similarity matrices respectively, and extract the spectral features from the matrices by PLS, which indicate geometric distribution and inner relationships of the keypoints. Then the keypoints matching is done by bipartite graph matching. The experiments on both synthetic and real-world data corroborate the robustness and invariance of the algorithm.

© 2009 Chinese Optics Letters

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription