Abstract

Nonvolatile two-color holographic recording gated by incoherent ultraviolet (UV) light centered at 365 nm is investigated in near-stoichiometric lithium niobate crystals. The influence of thermal treatment on the two-color recording is studied. The results show that thermal reduction tends to improve the two-color recording performance, whereas thermal oxidation degrades the two-color recording. With an incoherent 0.2-W/cm2 UV gating light and a 0.25-W/cm2 semiconductor recording laser at 780 nm, a two-color recording sensitivity of 4\times10^{-3} cm/J and a recording dynamic range characterized by M/# of 0.12 are achieved in a 2.2-mm thermally reduced near-stoichiometric lithium niobate crystal. We attribute the improvement to the prolonged lifetime of small polarons and the increased absorption at the gating wavelength due to thermal reduction.

© 2009 Chinese Optics Letters

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription