Abstract

A microscope image formation model based on scalar diffraction and Fourier optics has been developed, which takes a slant angle between the optical axis and the observed surface into account. The theoretical investigations of the imaging of line structures using this model show that reflection type microscopes are much stronger influenced by the slant angle than transmission type microscopes. In addition, the slant angle changes the image contrast and the image shape of a line structure, especially its edge. The larger the slant angle, the stronger the decrease of the image contrast, and the less steep the edge slope in both types of microscopes. Furthermore, the larger the numerical aperture of the objective, the less the effect of the slant angle on the line image shape.

© 2008 Chinese Optics Letters

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription