Abstract

Existing manifold learning algorithms use Euclidean distance to measure the proximity of data points. However, in high-dimensional space, Minkowski metrics are no longer stable because the ratio of distance of nearest and farthest neighbors to a given query is almost unit. It will degrade the performance of manifold learning algorithms when applied to dimensionality reduction of high-dimensional data. We introduce a new distance function named shrinkage-divergence-proximity (SDP) to manifold learning, which is meaningful in any high-dimensional space. An improved locally linear embedding (LLE) algorithm named SDP-LLE is proposed in light of the theoretical result. Experiments are conducted on a hyperspectral data set and an image segmentation data set. Experimental results show that the proposed method can efficiently reduce the dimensionality while getting higher classification accuracy.

© 2008 Chinese Optics Letters

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription