Abstract

Based on the Rytov approximation of light propagation in weak turbulent atmosphere, the closed-form expressions of field and average irradiance of each one of the four fundamental families of Helmholtz-Gauss (HzG) beams: cosine-Gauss beams, stationary Mathieu-Gauss beams, stationary parabolic-Gauss beams, and Bessel-Gauss beams, which are propagating in weak turbulent atmosphere, are obtained. The results show that the field and average irradiance can be written as the product of four factors: complex amplitude depending on the z-coordinate only, a Gaussian beam, a factor of complex phase perturbation induced by atmospheric turbulence, and a complex scaled version of the transverse shape of the non-diffracting beam. The effect of weak atmospheric turbulence on irradiance distribution of the HzG beam can be ignored.

© 2008 Chinese Optics Letters

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription