Abstract

Ytterbium-doped yttrium oxysulfide (Yb:Y2O2S) has been synthesized by solid-state reaction with sulfide flux. Diffuse reflection and emission spectra have been measured in order to determine the crystal field splitting of Yb3+ ion in the YOS lattice. According to the crystal-field levels probed in the spectra, the crystal field splitting of 2^F_7/2 manifold of Yb3+ ion in YOS is 709 cm^(-1), which is large enough for the quasi-three-level laser operation of Yb3+ ion. Emission peak position, width, full-width at half maximum (FWHM), and normalized intensity of Yb:YOS are fitted from its emission spectrum. For comparison, relevant data of 5.4 at.-% Yb:YAG is also provided.

© 2008 Chinese Optics Letters

PDF Article

References

  • View by:
  • |
  • |

  1. P.-H. Haumesser, R. Gaumé, B. Viana, E. Antic-Fidancev, and D. Vivien, J. Phys.: Condens. Matter. 13, 5427 (2001).
  2. D. J. Ripin, J. R. Ochoa, R. L. Aggarwal, and T. Y. Fan, Opt. Lett. 29, 2154 (2004).
  3. P. Yan, H. Wu, M. Gong, Q. Liu, C. Li, R. Z. Cui, and W. P. Jia, Opt. Laser Eng. 42, 413 (2004).
  4. F. Brunner, R. Paschotta, J. Aus der Au, G. J. Spühler, and F. Morier-Genoud, Opt. Lett. 26, 379 (2001).
  5. C. A. Morrison and P. Leavitt, Handbook on the Physics and Chemistry of Rare Earths (Amsterdam: Elsevier, 1982) p46.
  6. J. B. Gruber, B. Zandi, and L. Merkle, J. Appl. Phys. 83, 1009 (1998).
  7. G. Liu, Bernard Jacquier (eds.) Spectroscopic properties of Rare Earths in Optical Materials (Tsinghua University Press, Beijing, 2005) p2.
  8. S.-H. Yu, Z.-H. Han, J. Yang, H.-Q. Zhao, R.-Y. Yang, Y. Xie, Y.-T. Qian, and Y.-H. Zhang, Chem. Mater. 11, 192 (1999).
  9. M. Machida, K. Kawamura, K. Ito, and K. Ikeue, Chem. Mater. 17, 1487 (2005).
  10. D. Cavouras, I. Kandarakis, T. Maris, G. S. Panayiotakis, and C. D. Nomicos, Eur. J. Radio. 35, 70 (2000).
  11. L. D. da Vila, E. B. Stucchi, and M. R. Davolos, J. Mater. Chem. 7, 2113 (1997).
  12. L. E. Sobon, K. A. Wickersheim, R. A. Buchanan, and R. V. Alver, J. Appl. Phys. 42, 3049 (1971).
  13. R. V. Alver, R. A. Buchanan, K. A. Wickersheim, and E. A. C. Yates, J. Appl. Phys. 42, 3043 (1971).
  14. Yu. V. Orlovskii, T. T. Basiev, K. K. Pukhov, M. V. Polyachenkova, P. P. Fedorov, O. K. Alimov, E. I. Gorokhova, V. A. Demidenko, O. A. Khristich, and R. M. Zakalyukin, J. Lumin. 125, 201 (2007).
  15. P. Zhang, Z. Hong, Q. Huang, X. Fan, Z. Wang, G. Qian, and M. Wang, J. Chin. Ceram. Soci. 33, 140 (2005).
  16. G. V. Anan'eva, E. I. Gorokhova, L. N. Kinzhibalo, V. V. Kuprevich, T. I. Merkulyaeva, and O. A. Kristich, J. Opt. Technol. 66, 404 (1999).
  17. X. Xu, Z. Zhao, P. Song, G. Zhou, J. Xu, and P. Deng, J. Opt. Soc. Am. B. 21, 543 (2004).
  18. X. He, G. Zhao, X. Xu, X. Zeng, and J. Xu, Chin. Opt. Lett. 5, 295 (2007).
  19. X. Zeng, G. Zhao, X. Xu, H. Li, J. Xua, Z. Zhao, X. He, H. Pang, M. Jie, and C. Yan, J. Crystal Growth. 274, 106 (2005).
  20. M. Mikami, S. Nakamura, M. Itoh, K. Nakajima, and T. Shishido, J. Lumin. 102, 7 (2003).
  21. B. M. Walsh, J. M. McMahon, W. C. Edwards, N. P. Barnes, R. W. Equall, and R. L. Hutcheson, J. Opt. Soc. Am. B 19, 2893 (2002).

2007 (2)

Yu. V. Orlovskii, T. T. Basiev, K. K. Pukhov, M. V. Polyachenkova, P. P. Fedorov, O. K. Alimov, E. I. Gorokhova, V. A. Demidenko, O. A. Khristich, and R. M. Zakalyukin, J. Lumin. 125, 201 (2007).

X. He, G. Zhao, X. Xu, X. Zeng, and J. Xu, Chin. Opt. Lett. 5, 295 (2007).

2005 (3)

P. Zhang, Z. Hong, Q. Huang, X. Fan, Z. Wang, G. Qian, and M. Wang, J. Chin. Ceram. Soci. 33, 140 (2005).

M. Machida, K. Kawamura, K. Ito, and K. Ikeue, Chem. Mater. 17, 1487 (2005).

X. Zeng, G. Zhao, X. Xu, H. Li, J. Xua, Z. Zhao, X. He, H. Pang, M. Jie, and C. Yan, J. Crystal Growth. 274, 106 (2005).

2004 (3)

P. Yan, H. Wu, M. Gong, Q. Liu, C. Li, R. Z. Cui, and W. P. Jia, Opt. Laser Eng. 42, 413 (2004).

X. Xu, Z. Zhao, P. Song, G. Zhou, J. Xu, and P. Deng, J. Opt. Soc. Am. B. 21, 543 (2004).

D. J. Ripin, J. R. Ochoa, R. L. Aggarwal, and T. Y. Fan, Opt. Lett. 29, 2154 (2004).

2003 (1)

M. Mikami, S. Nakamura, M. Itoh, K. Nakajima, and T. Shishido, J. Lumin. 102, 7 (2003).

2002 (1)

2001 (2)

F. Brunner, R. Paschotta, J. Aus der Au, G. J. Spühler, and F. Morier-Genoud, Opt. Lett. 26, 379 (2001).

P.-H. Haumesser, R. Gaumé, B. Viana, E. Antic-Fidancev, and D. Vivien, J. Phys.: Condens. Matter. 13, 5427 (2001).

2000 (1)

D. Cavouras, I. Kandarakis, T. Maris, G. S. Panayiotakis, and C. D. Nomicos, Eur. J. Radio. 35, 70 (2000).

1999 (2)

S.-H. Yu, Z.-H. Han, J. Yang, H.-Q. Zhao, R.-Y. Yang, Y. Xie, Y.-T. Qian, and Y.-H. Zhang, Chem. Mater. 11, 192 (1999).

G. V. Anan'eva, E. I. Gorokhova, L. N. Kinzhibalo, V. V. Kuprevich, T. I. Merkulyaeva, and O. A. Kristich, J. Opt. Technol. 66, 404 (1999).

1998 (1)

J. B. Gruber, B. Zandi, and L. Merkle, J. Appl. Phys. 83, 1009 (1998).

1997 (1)

L. D. da Vila, E. B. Stucchi, and M. R. Davolos, J. Mater. Chem. 7, 2113 (1997).

1971 (2)

L. E. Sobon, K. A. Wickersheim, R. A. Buchanan, and R. V. Alver, J. Appl. Phys. 42, 3049 (1971).

R. V. Alver, R. A. Buchanan, K. A. Wickersheim, and E. A. C. Yates, J. Appl. Phys. 42, 3043 (1971).

Chem. Mater. (2)

S.-H. Yu, Z.-H. Han, J. Yang, H.-Q. Zhao, R.-Y. Yang, Y. Xie, Y.-T. Qian, and Y.-H. Zhang, Chem. Mater. 11, 192 (1999).

M. Machida, K. Kawamura, K. Ito, and K. Ikeue, Chem. Mater. 17, 1487 (2005).

Chin. Opt. Lett. (1)

Eur. J. Radio. (1)

D. Cavouras, I. Kandarakis, T. Maris, G. S. Panayiotakis, and C. D. Nomicos, Eur. J. Radio. 35, 70 (2000).

J. Appl. Phys. (3)

J. B. Gruber, B. Zandi, and L. Merkle, J. Appl. Phys. 83, 1009 (1998).

L. E. Sobon, K. A. Wickersheim, R. A. Buchanan, and R. V. Alver, J. Appl. Phys. 42, 3049 (1971).

R. V. Alver, R. A. Buchanan, K. A. Wickersheim, and E. A. C. Yates, J. Appl. Phys. 42, 3043 (1971).

J. Chin. Ceram. Soci. (1)

P. Zhang, Z. Hong, Q. Huang, X. Fan, Z. Wang, G. Qian, and M. Wang, J. Chin. Ceram. Soci. 33, 140 (2005).

J. Crystal Growth. (1)

X. Zeng, G. Zhao, X. Xu, H. Li, J. Xua, Z. Zhao, X. He, H. Pang, M. Jie, and C. Yan, J. Crystal Growth. 274, 106 (2005).

J. Lumin. (2)

M. Mikami, S. Nakamura, M. Itoh, K. Nakajima, and T. Shishido, J. Lumin. 102, 7 (2003).

Yu. V. Orlovskii, T. T. Basiev, K. K. Pukhov, M. V. Polyachenkova, P. P. Fedorov, O. K. Alimov, E. I. Gorokhova, V. A. Demidenko, O. A. Khristich, and R. M. Zakalyukin, J. Lumin. 125, 201 (2007).

J. Mater. Chem. (1)

L. D. da Vila, E. B. Stucchi, and M. R. Davolos, J. Mater. Chem. 7, 2113 (1997).

J. Opt. Soc. Am. B (1)

J. Opt. Soc. Am. B. (1)

X. Xu, Z. Zhao, P. Song, G. Zhou, J. Xu, and P. Deng, J. Opt. Soc. Am. B. 21, 543 (2004).

J. Opt. Technol. (1)

J. Phys.: Condens. Matter. (1)

P.-H. Haumesser, R. Gaumé, B. Viana, E. Antic-Fidancev, and D. Vivien, J. Phys.: Condens. Matter. 13, 5427 (2001).

Opt. Laser Eng. (1)

P. Yan, H. Wu, M. Gong, Q. Liu, C. Li, R. Z. Cui, and W. P. Jia, Opt. Laser Eng. 42, 413 (2004).

Opt. Lett. (2)

Other (2)

C. A. Morrison and P. Leavitt, Handbook on the Physics and Chemistry of Rare Earths (Amsterdam: Elsevier, 1982) p46.

G. Liu, Bernard Jacquier (eds.) Spectroscopic properties of Rare Earths in Optical Materials (Tsinghua University Press, Beijing, 2005) p2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.