Abstract

A novel fiber-laser-based strain sensor is proposed and experimentally demonstrated. The laser cavity is composed of a high-birefringence Sagnac fiber loop mirror (HiBi-SFLM) and a fiber Bragg grating (FBG) which also acts as a strain-sensing element. In the linear region of the HiBi-SFLM reflection spectrum, when the strain applied on the FBG makes the Bragg grating wavelength shift, the laser output power changes due to reflectivity variation of the HiBi-SFLM. Experimental results show that the laser output power varies almost linearly with the applied strain. The measurement of the output power can be performed by a conventional photo-detector.

© 2008 Chinese Optics Letters

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription