Abstract

We present a novel broadband dispersion compensating photonic crystal fiber with defected core in this paper. The small central defect of air hole can flexibly control the chromatic dispersion properties of this kind of photonic crystal fiber. This kind of fiber has broadband large negative chromatic dispersion, and the chromatic dispersion coefficient varies from -440 to -480 ps/(nm·km) in the measured wavelength range of 1500-1625 nm. The calculated chromatic dispersion curve is well matched to the measured chromatic dispersion coefficient in the range of 1500-1625 nm. The proposed photonic crystal fiber can be used to design the dispersion compensating fiber in the desired wavelength range by adjusting its structural parameters.

© 2008 Chinese Optics Letters

PDF Article

References

  • View by:
  • |
  • |

  1. F. Gérome, J.-L. Auguste, and J.-M. Blondy, Opt. Lett. 29, 2725 (2004).
  2. Y. Ni, L. Zhang, L. An, J. Peng, and C. Fan, IEEE Photon. Technol. Lett. 16, 1516 (2004).
  3. A. Huttunen and P. Torma, Opt. Express 13, 627 (2005).
  4. T. Fujisawa, K. Saitoh, K. Wada, and M. Koshiba, Opt. Express 14, 893 (2006).
  5. L. Shen, W. Huang, G. Chen, and S. Jian, IEEE Photon. Technol. Lett. 15, 540 (2003).
  6. S. Yang, Y. Zhang, L. He, and S. Xie, Opt. Lett. 31, 2830 (2006).
  7. K. Saitoh and M. Koshiba, IEEE J. Quantum Electron. 38, 927 (2002).
  8. A. Cucinotta, S. Selleri, L. Vincetti, and M. Zoboli, IEEE Photon. Technol. Lett. 14, 1530 (2002).
  9. K. Saitoh, N. Florous, and M. Koshiba, Opt. Express 13, 8365 (2005).
  10. K. Lai, S. G. Leon-Saval, A. Witkowska, W. J. Wadsworth, and T. A. Birks, Opt. Lett. 32, 328 (2007).
  11. Y. Fang and T. Shen, Chin. Opt. Lett. 3, 261 (2005).
  12. T. P. White, R. C. McPhedran, C. M. de Sterke, L. C. Botten, and M. J. Steel, Opt. Lett. 26, 1660 (2001).
  13. V. Finazzi, T. M. Monro, and D. J. Richardson, IEEE Photon. Technol. Lett. 15, 1246 (2003).

2007 (1)

2006 (2)

2005 (3)

2004 (2)

Y. Ni, L. Zhang, L. An, J. Peng, and C. Fan, IEEE Photon. Technol. Lett. 16, 1516 (2004).

F. Gérome, J.-L. Auguste, and J.-M. Blondy, Opt. Lett. 29, 2725 (2004).

2003 (2)

L. Shen, W. Huang, G. Chen, and S. Jian, IEEE Photon. Technol. Lett. 15, 540 (2003).

V. Finazzi, T. M. Monro, and D. J. Richardson, IEEE Photon. Technol. Lett. 15, 1246 (2003).

2002 (2)

K. Saitoh and M. Koshiba, IEEE J. Quantum Electron. 38, 927 (2002).

A. Cucinotta, S. Selleri, L. Vincetti, and M. Zoboli, IEEE Photon. Technol. Lett. 14, 1530 (2002).

2001 (1)

Chin. Opt. Lett. (1)

IEEE J. Quantum Electron. (1)

K. Saitoh and M. Koshiba, IEEE J. Quantum Electron. 38, 927 (2002).

IEEE Photon. Technol. Lett. (4)

A. Cucinotta, S. Selleri, L. Vincetti, and M. Zoboli, IEEE Photon. Technol. Lett. 14, 1530 (2002).

V. Finazzi, T. M. Monro, and D. J. Richardson, IEEE Photon. Technol. Lett. 15, 1246 (2003).

Y. Ni, L. Zhang, L. An, J. Peng, and C. Fan, IEEE Photon. Technol. Lett. 16, 1516 (2004).

L. Shen, W. Huang, G. Chen, and S. Jian, IEEE Photon. Technol. Lett. 15, 540 (2003).

Opt. Express (3)

Opt. Lett. (4)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.