Abstract

Lidar is an efficient tool for remote monitoring, but the effective range is often limited by signal-to-noise ratio (SNR). The reason is that noises or fluctuations always strongly affect the measured results. So the weak signal detection is a basic and important problem in the lidar systems. Through the power spectral estimation, we find that digital filters are not suitable for processing lidar signal buried in noise. We present a new method of the lidar signal acquisition based on discrete wavelet transform for the improvement of SNR to increase the effective range of lidar measurements. Performance of the method is investigated by detecting the simulating and real signals in white noise. The results of Butterworth filter, which is a kind of finite impulse response filter, are also demonstrated for comparison. The experiment results show that the approach is superior to the traditional methods.

© 2007 Chinese Optics Letters

PDF Article

References

  • View by:
  • |
  • |

  1. A. H. Omar, J. Geophys. Res. 106, 1227 (2001).
  2. V. Santacesaria, A. R. MacKenzie, and L. Stefanutti, Tellus (B) 53, 306 (2001).
  3. L. R. Douglass, M. R. Schoeberl, S. R. Kawa, and E. V. Browell, J. Geophys. Res. 106, 9879 (2001).
  4. F. G. Fernald, Appl. Opt. 23, 652 (1984).
  5. S. Lerkvarnyu, "Moving average method for time series lidar data", http://www.gisdevelopment.net/aars/acrs/1998/ps3/ps3016.shtml.
  6. O. Lee, A. P. Wade, and G. A. Dumont, Anal. Chem. 66, 4507 (1994).
  7. M. U. A. Bromba and H. Ziegler, Anal. Chem. 56, 2502 (1988).
  8. A. Felinger, T. L. Pap, and J. Inczedy, Anal. Chim. Acta 248, 441 (1991).
  9. S. Shearman, Personal Eng. and Instrumentation News 15, 24 (1998).
  10. O. Rioul and M. Vetterli, IEEE SP Mag. 8, 14 (1991).
  11. B. Walczak, D. L. Massart, and Chemom, Intel. Lab. Syst. 36, 81 (1997).

2001

A. H. Omar, J. Geophys. Res. 106, 1227 (2001).

V. Santacesaria, A. R. MacKenzie, and L. Stefanutti, Tellus (B) 53, 306 (2001).

L. R. Douglass, M. R. Schoeberl, S. R. Kawa, and E. V. Browell, J. Geophys. Res. 106, 9879 (2001).

1998

S. Shearman, Personal Eng. and Instrumentation News 15, 24 (1998).

1997

B. Walczak, D. L. Massart, and Chemom, Intel. Lab. Syst. 36, 81 (1997).

1994

O. Lee, A. P. Wade, and G. A. Dumont, Anal. Chem. 66, 4507 (1994).

1991

O. Rioul and M. Vetterli, IEEE SP Mag. 8, 14 (1991).

A. Felinger, T. L. Pap, and J. Inczedy, Anal. Chim. Acta 248, 441 (1991).

1988

M. U. A. Bromba and H. Ziegler, Anal. Chem. 56, 2502 (1988).

1984

Anal. Chem.

O. Lee, A. P. Wade, and G. A. Dumont, Anal. Chem. 66, 4507 (1994).

M. U. A. Bromba and H. Ziegler, Anal. Chem. 56, 2502 (1988).

Anal. Chim. Acta

A. Felinger, T. L. Pap, and J. Inczedy, Anal. Chim. Acta 248, 441 (1991).

Appl. Opt.

IEEE SP Mag.

O. Rioul and M. Vetterli, IEEE SP Mag. 8, 14 (1991).

Intel. Lab. Syst.

B. Walczak, D. L. Massart, and Chemom, Intel. Lab. Syst. 36, 81 (1997).

J. Geophys. Res.

A. H. Omar, J. Geophys. Res. 106, 1227 (2001).

L. R. Douglass, M. R. Schoeberl, S. R. Kawa, and E. V. Browell, J. Geophys. Res. 106, 9879 (2001).

Personal Eng. and Instrumentation

S. Shearman, Personal Eng. and Instrumentation News 15, 24 (1998).

Tellus (B)

V. Santacesaria, A. R. MacKenzie, and L. Stefanutti, Tellus (B) 53, 306 (2001).

Other

S. Lerkvarnyu, "Moving average method for time series lidar data", http://www.gisdevelopment.net/aars/acrs/1998/ps3/ps3016.shtml.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.