Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Chinese Optics Letters
  • Vol. 5,
  • Issue S1,
  • pp. S232-S234
  • (2007)

Fabrication of different fine fiber tips for near field scanning optical microscopy by a simple chemical etching technique

Not Accessible

Your library or personal account may give you access

Abstract

The near-field scanning optical microscope, which is integrated with scanning probe microscope technology, has been investigated as a tool for material science, biology, photolithography, and high-density optical recording. In near-field scanning optical microscope, a sub-wavelength sized probe is used to pick up the optical properties of a sample with a resolution limited primarily by the probe size. The configuration of the tip in the application is of utmost importance to the performance of the system. The spatial resolution of near-field scanning optical microscope system is mainly determined by the aperture size of the fiber tip, and the optical transmission properties of the system are highly influenced by the cone angle of the tip as well as the tip surface quality. However, the poor reproducibility in tip fabrication and the low optical throughput are still the major technical difficulties. In this paper, a design of etching automatism for fabricating the tip of near-field scanning optical microscope is proposed. The configuration of the design is very simple and can be actualized easily. The design that considers the main factors that may affect the configuration of fiber tip, makes the experimental condition of fiber tip the same in any condition, and also allows the changes of the experimental condition for fabricating different configuration tips. Static and dynamic etchings and their combinations are studied. The etching process is optimized, and the tips with short tapers, small apertures (about 50 nm) and large aperture cone angles (40 deg.) are successfully obtained. Multiple-tapered tips are also fabricated by using different dynamic regimes. The experimental results show that the design can not only fabricate sharp fiber tips, but also fabricate different configuration fiber tips. The design makes the etching of fiber tips controllable and can satisfy different requirements.

© 2007 Chinese Optics Letters

PDF Article
More Like This
Chemically etched fiber tips for near-field optical microscopy: a process for smoother tips

Patrick Lambelet, Abdeljalil Sayah, Michael Pfeffer, Claude Philipona, and Fabienne Marquis-Weible
Appl. Opt. 37(31) 7289-7292 (1998)

Fabrication and characterization of optical-fiber nanoprobes for scanning near-field optical microscopy

N. Essaidi, Y. Chen, V. Kottler, E. Cambril, C. Mayeux, N. Ronarch, and C. Vieu
Appl. Opt. 37(4) 609-615 (1998)

Chemical silver coating of fiber tips in near-field scanning optical microscopy

Chandra S. Vikram and William K. Witherow
Opt. Lett. 24(10) 682-684 (1999)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.