Abstract

We numerically analyzed the performance of the two polarization-mode dispersion (PMD) compensation methods of the single degree of polarization (DOP) sampling and DOP ellipsoid sampling methods. The numerical results show that the single DOP sampling method can generate the maximum DOP, and may result in a small overall differential group delay (DGD) or the principal state of polarization (PSP) launching. By the PSP launching, just the first-order PMD is compensated while second-order PMD not. When the DOP ellipsoid sampling method is used the performance is evidently better, because the effect of high-order PMD on PMD compensation is reduced.

© 2007 Chinese Optics Letters

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Buchali and H. Buow, J. Lightwave Technol. 22, 1116 (2004).
  2. L. Xi, X. Zhang, L. Yu, and G. Zhou, Chin. Opt. Lett. 2, 262 (2004).
  3. X. Zhang, L. Xi, L. Yu, and G. Zhou, Chin. Opt. Lett. 2, 316 (2004).
  4. T. Takahashi, T. Imai, and M. Aiki, Electron. Lett. 30, 348 (1994).
  5. F. Buchali, S. Lanne, J.-P. Thiery, and W. Baumert, in Proceedings of OFC'2001 Tup5-1 (2001).
  6. Y. Zheng, B. Yang, and X. Zhang, IEEE Photon. Technol. Lett. 29, 1412 (2002).
  7. J. C. Rasmussen, A. Isomura, and G. Ishikawa, J. Lightwave Technol. 20, 2101 (2002).
  8. H. Rosenfeldt, C. Knothe, U. R. Brinkmeyer, and E. Feiste, in Tech. Dig. OFC'2001 PD27-1 (2001).
  9. C. Xie, L. Moller, R. M. Jopson, and A. H. Gnauck, in Proceedings of OFC'2004 WE4 (2004).
  10. C. Xie and L. Moller, IEEE Photon. Technol. Lett. 17, 570 (2005).
  11. C. D. Poole and R. E. Wagner, Electron. Lett. 22, 1029 (1986).
  12. J. P. Gordon and H. Kogelnik, Proc. Nat. Acad. Sci. 97, 4541 (2000).
  13. Y. Zheng, X. Zhang, G. Zhou, Y. Shen, and L. Chen, IEEE J. Quantum Electron. 40, 427 (2004).
  14. K. Nobuhiko, J. Lightwave Technol. 19, 480 (2001).

2005 (1)

C. Xie and L. Moller, IEEE Photon. Technol. Lett. 17, 570 (2005).

2004 (4)

2002 (2)

J. C. Rasmussen, A. Isomura, and G. Ishikawa, J. Lightwave Technol. 20, 2101 (2002).

Y. Zheng, B. Yang, and X. Zhang, IEEE Photon. Technol. Lett. 29, 1412 (2002).

2001 (1)

2000 (1)

J. P. Gordon and H. Kogelnik, Proc. Nat. Acad. Sci. 97, 4541 (2000).

1994 (1)

T. Takahashi, T. Imai, and M. Aiki, Electron. Lett. 30, 348 (1994).

1986 (1)

C. D. Poole and R. E. Wagner, Electron. Lett. 22, 1029 (1986).

Aiki, M.

T. Takahashi, T. Imai, and M. Aiki, Electron. Lett. 30, 348 (1994).

Buchali, F.

Buow, H.

Chen, L.

Y. Zheng, X. Zhang, G. Zhou, Y. Shen, and L. Chen, IEEE J. Quantum Electron. 40, 427 (2004).

Gordon, J. P.

J. P. Gordon and H. Kogelnik, Proc. Nat. Acad. Sci. 97, 4541 (2000).

Imai, T.

T. Takahashi, T. Imai, and M. Aiki, Electron. Lett. 30, 348 (1994).

Ishikawa, G.

Isomura, A.

Kogelnik, H.

J. P. Gordon and H. Kogelnik, Proc. Nat. Acad. Sci. 97, 4541 (2000).

Moller, L.

C. Xie and L. Moller, IEEE Photon. Technol. Lett. 17, 570 (2005).

Nobuhiko, K.

Poole, C. D.

C. D. Poole and R. E. Wagner, Electron. Lett. 22, 1029 (1986).

Rasmussen, J. C.

Shen, Y.

Y. Zheng, X. Zhang, G. Zhou, Y. Shen, and L. Chen, IEEE J. Quantum Electron. 40, 427 (2004).

Takahashi, T.

T. Takahashi, T. Imai, and M. Aiki, Electron. Lett. 30, 348 (1994).

Wagner, R. E.

C. D. Poole and R. E. Wagner, Electron. Lett. 22, 1029 (1986).

Xi, L.

Xie, C.

C. Xie and L. Moller, IEEE Photon. Technol. Lett. 17, 570 (2005).

Yang, B.

Y. Zheng, B. Yang, and X. Zhang, IEEE Photon. Technol. Lett. 29, 1412 (2002).

Yu, L.

Zhang, X.

L. Xi, X. Zhang, L. Yu, and G. Zhou, Chin. Opt. Lett. 2, 262 (2004).

Y. Zheng, X. Zhang, G. Zhou, Y. Shen, and L. Chen, IEEE J. Quantum Electron. 40, 427 (2004).

X. Zhang, L. Xi, L. Yu, and G. Zhou, Chin. Opt. Lett. 2, 316 (2004).

Y. Zheng, B. Yang, and X. Zhang, IEEE Photon. Technol. Lett. 29, 1412 (2002).

Zheng, Y.

Y. Zheng, X. Zhang, G. Zhou, Y. Shen, and L. Chen, IEEE J. Quantum Electron. 40, 427 (2004).

Y. Zheng, B. Yang, and X. Zhang, IEEE Photon. Technol. Lett. 29, 1412 (2002).

Zhou, G.

Y. Zheng, X. Zhang, G. Zhou, Y. Shen, and L. Chen, IEEE J. Quantum Electron. 40, 427 (2004).

L. Xi, X. Zhang, L. Yu, and G. Zhou, Chin. Opt. Lett. 2, 262 (2004).

X. Zhang, L. Xi, L. Yu, and G. Zhou, Chin. Opt. Lett. 2, 316 (2004).

Chin. Opt. Lett. (2)

Electron. Lett. (2)

C. D. Poole and R. E. Wagner, Electron. Lett. 22, 1029 (1986).

T. Takahashi, T. Imai, and M. Aiki, Electron. Lett. 30, 348 (1994).

IEEE J. Quantum Electron. (1)

Y. Zheng, X. Zhang, G. Zhou, Y. Shen, and L. Chen, IEEE J. Quantum Electron. 40, 427 (2004).

IEEE Photon. Technol. Lett. (2)

Y. Zheng, B. Yang, and X. Zhang, IEEE Photon. Technol. Lett. 29, 1412 (2002).

C. Xie and L. Moller, IEEE Photon. Technol. Lett. 17, 570 (2005).

J. Lightwave Technol. (3)

Proc. Nat. Acad. Sci. (1)

J. P. Gordon and H. Kogelnik, Proc. Nat. Acad. Sci. 97, 4541 (2000).

Other (3)

H. Rosenfeldt, C. Knothe, U. R. Brinkmeyer, and E. Feiste, in Tech. Dig. OFC'2001 PD27-1 (2001).

C. Xie, L. Moller, R. M. Jopson, and A. H. Gnauck, in Proceedings of OFC'2004 WE4 (2004).

F. Buchali, S. Lanne, J.-P. Thiery, and W. Baumert, in Proceedings of OFC'2001 Tup5-1 (2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.