Abstract

The present paper proposes a novel design for achieving single-polarization single-mode (SPSM) operation at 1550 nm in photonic crystal fiber (PCF), using a rectangular-lattice PCF with two lines of three central air holes enlarged. The proposed PCF composed entirely of silica material is modeled by a full-vector finite element method with anisotropic perfectly matched layers. Simulations show that single-polarization operation within broad wavelength range can be easily realized with the proposed structure. The wide-band SPSM operation features, the low confinement losses, and the small effective mode area are the main advantages of the proposed PCF structure. A SPSM-PCF with confinement loss less than 0.1 dB/km within wavelength range from 1370 to 1610 nm and effective mode area about 4.7 micron2 at 1550 nm is numerically demonstrated.

© 2007 Chinese Optics Letters

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription