Abstract

There is an increasing demand on the measurable velocity of laser interferometer in manufacturing technologies. The maximum measurable velocity is limited by frequency difference of laser source, optical configuration, and electronics bandwidth. An experimental setup based on free falling movement has been demonstrated to measure the maximum measurable velocity for interferometers. Measurement results show that the maximum measurable velocity is less than its theoretical value. Moreover, the effect of kinds of factors upon the measurement results is analyzed, and the results can offer a reference for industrial applications.

© 2007 Chinese Optics Letters

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. Cheng, H. Gao, Z. Zhang, H. Huang, and J. Zhu, Appl. Opt. 45, 2246 (2006).
  2. Agilent Technologies, Agilent 5527A/B-2 Achieving Maximum Accuracy and Repeatability Product Note.
  3. W. T. Estler, Appl. Opt. 24, 808 (1985).
  4. H. Gao, Z. Cheng, Z. Ning, P. Cui, and H. Huang, Chin. Opt. Lett. 3, 513 (2005).
  5. S. Yokoyama, T. Yokoyama, and T. Araki, Meas. Sci. Technol. 16, 1841 (2005).
  6. F. C. Demarest, Meas. Sci. Technol. 9, 1024 (1998).
  7. J. Yan, J. Wu, S. Gao, and C. Yin, Acta Metrologica Sin. (in Chinese) 26, 5 (2005).
  8. Agilent Technologies, Agilent 5529A Dynamic Calibrator Data Sheet.
  9. Z. Cheng and H. Gao, Dual-frequency laser interferometric free-falling body measuring equipment for velocity measurement (in Chinese) Chinese patent, the Application Number of Inventing 200410053304.0 (2004).
  10. Z. Cheng, H. Gao, X. Chai, Z. Ning, and H. Huang, Proc. SPIE 5662, 395 (2004).

2006

2005

H. Gao, Z. Cheng, Z. Ning, P. Cui, and H. Huang, Chin. Opt. Lett. 3, 513 (2005).

S. Yokoyama, T. Yokoyama, and T. Araki, Meas. Sci. Technol. 16, 1841 (2005).

J. Yan, J. Wu, S. Gao, and C. Yin, Acta Metrologica Sin. (in Chinese) 26, 5 (2005).

2004

Z. Cheng, H. Gao, X. Chai, Z. Ning, and H. Huang, Proc. SPIE 5662, 395 (2004).

1998

F. C. Demarest, Meas. Sci. Technol. 9, 1024 (1998).

1985

Araki, T.

S. Yokoyama, T. Yokoyama, and T. Araki, Meas. Sci. Technol. 16, 1841 (2005).

Chai, X.

Z. Cheng, H. Gao, X. Chai, Z. Ning, and H. Huang, Proc. SPIE 5662, 395 (2004).

Cheng, Z.

Cui, P.

Demarest, F. C.

F. C. Demarest, Meas. Sci. Technol. 9, 1024 (1998).

Estler, W. T.

Gao, H.

Gao, S.

J. Yan, J. Wu, S. Gao, and C. Yin, Acta Metrologica Sin. (in Chinese) 26, 5 (2005).

Huang, H.

Ning, Z.

H. Gao, Z. Cheng, Z. Ning, P. Cui, and H. Huang, Chin. Opt. Lett. 3, 513 (2005).

Z. Cheng, H. Gao, X. Chai, Z. Ning, and H. Huang, Proc. SPIE 5662, 395 (2004).

Wu, J.

J. Yan, J. Wu, S. Gao, and C. Yin, Acta Metrologica Sin. (in Chinese) 26, 5 (2005).

Yan, J.

J. Yan, J. Wu, S. Gao, and C. Yin, Acta Metrologica Sin. (in Chinese) 26, 5 (2005).

Yin, C.

J. Yan, J. Wu, S. Gao, and C. Yin, Acta Metrologica Sin. (in Chinese) 26, 5 (2005).

Yokoyama, S.

S. Yokoyama, T. Yokoyama, and T. Araki, Meas. Sci. Technol. 16, 1841 (2005).

Yokoyama, T.

S. Yokoyama, T. Yokoyama, and T. Araki, Meas. Sci. Technol. 16, 1841 (2005).

Zhang, Z.

Zhu, J.

Acta Metrologica Sin. (in Chinese)

J. Yan, J. Wu, S. Gao, and C. Yin, Acta Metrologica Sin. (in Chinese) 26, 5 (2005).

Appl. Opt.

Chin. Opt. Lett.

Meas. Sci. Technol.

S. Yokoyama, T. Yokoyama, and T. Araki, Meas. Sci. Technol. 16, 1841 (2005).

F. C. Demarest, Meas. Sci. Technol. 9, 1024 (1998).

Proc. SPIE

Z. Cheng, H. Gao, X. Chai, Z. Ning, and H. Huang, Proc. SPIE 5662, 395 (2004).

Other

Agilent Technologies, Agilent 5527A/B-2 Achieving Maximum Accuracy and Repeatability Product Note.

Agilent Technologies, Agilent 5529A Dynamic Calibrator Data Sheet.

Z. Cheng and H. Gao, Dual-frequency laser interferometric free-falling body measuring equipment for velocity measurement (in Chinese) Chinese patent, the Application Number of Inventing 200410053304.0 (2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.