Abstract

The multi-reference configuration interaction (MRCI) electronic energy calculations have been carried out on the ground state (X1'Sigma') as well as three low-lying excited states (3'Sigma', 1'Pi', 3'Pi') of ZnCd dimer. Potential energy curves (PECs) are therefore generated and fitted to the analytical potential energy functions (APEFs) using the Murrel-Sorbie (MS) potential function. Based on the PECs, the vibrational levels of each state are determined by solving Schrodinger equation of nuclear motion, and corresponding spectroscopic parameters are accurately calculated using the APEFs. The present values of spectroscopic parameters including equilibrium positions and dissociation energies are compared with other theoretical reports available at present.

© 2007 Chinese Optics Letters

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. E. Bondybed and J. H. English, J. Chemical Phys. 74, 6978 (1981).
  2. J. Bieron and W. E. Baylis, Mole. Phys. 98, 1051 (2000).
  3. J. R. Bieron and W. E. Baylis, Chem. Phys. 197, 129 (1995).
  4. E. Czuchaj, F. Rebentrost, H. Stoll, and H. Preuss, Chem. Phys. Lett. 212, 534 (1993).
  5. F. Gao, C.-L. Yang, and T.-Q. Ren, J. Mole. Structure (Theochem.) 758, 81 (2006).
  6. H.-J. Werner and P. J. Knowles, J. Chem. Phys. 89, 5803 (1988).
  7. P. J. Knowles and H.-J. Werner, J. Chem. Phys. Lett. 145, 514 (1988).
  8. H.-J. Werner, P. J. Knowles, R. Lindh, F. R. Manby, M. Schutz, P. Celani, T. Korona, G. Kauhut, R. D. Amos, A. Bernhardsson, A. Berning, D. L. Cooper, M. J. O. Deegan, A. J. Dobbyn, F. Eckert, C. Hample, G. Hetzer, A. W. Loyd, S. J. McNichdas, W. Meyer, M. E. Mura, A. Nicklas, P. Dalmieri, R. Pitzer, V. Schumann, H. Stoll, A. J. Stone, R. Tarroni, and T. Thorsteinsson, MOLPRO, Birmingham University, Cardiff University (2002).
  9. R. J. Le Roy, level7.5: A Computer Program for Solving the Radial Schrodinger Equation for Bound and Quasibound Levels Chemical Physics Research Report No. CP-642R, University of Waterloo (2002).
  10. Dawning4000A is a large parallel compute containing 134 CPUs (AMD Opteron 64-bit 1.8 GHz) in Ludong University. It is based on Turbo Linux 8.0 and implements with Molpro2002, Gaussian03, Molcas 5.0 and so on.
  11. C. L. Yang, Z. H. Zhang, and T. Q. Ren, J. Chem. Phys. 116, 6656 (2002).
  12. C. L. Yang, Z. H. Zhu, R. Wang, and X. Y. Liu, J. Mole. Structure (Theochem.) 548, 47 (2001).
  13. C. Yang, Z. Zhu, and R. Wang, Chin. J. Atomic and Molecular Phys. 18, 355 (2001).
  14. C.-L. Yang, Y.-J. Huang, X. Zhang, and K. L. Han, J. Mole. Structure (Theochem.) 625, 289 (2003).
  15. D. Shi, Y. Liu, J. Sun, Z. Zhu, and X. Yang, Chin. Opt. Lett. 3, 683 (2005).
  16. C.-L. Yang, X. Zhang, and K.-L. Han, J. Mole. Structure (Theochem.) 678, 183 (2004).
  17. C.-L. Yang, X. Zhang, and K.-L. Han, J. Mole. Structure (Theochem.) 676, 209 (2004).
  18. T.-Q. Ren, S.-L. Ding, and C.-L. Yang, J. Mole. Structure (Theochem.) 728, 159 (2005).
  19. J. N. Murrell and K. S. Sorbe, J. Chem. Soc. Faraday Trans. 1552, 2 (1974).

2006

F. Gao, C.-L. Yang, and T.-Q. Ren, J. Mole. Structure (Theochem.) 758, 81 (2006).

2005

T.-Q. Ren, S.-L. Ding, and C.-L. Yang, J. Mole. Structure (Theochem.) 728, 159 (2005).

D. Shi, Y. Liu, J. Sun, Z. Zhu, and X. Yang, Chin. Opt. Lett. 3, 683 (2005).

2004

C.-L. Yang, X. Zhang, and K.-L. Han, J. Mole. Structure (Theochem.) 678, 183 (2004).

C.-L. Yang, X. Zhang, and K.-L. Han, J. Mole. Structure (Theochem.) 676, 209 (2004).

2003

C.-L. Yang, Y.-J. Huang, X. Zhang, and K. L. Han, J. Mole. Structure (Theochem.) 625, 289 (2003).

2002

C. L. Yang, Z. H. Zhang, and T. Q. Ren, J. Chem. Phys. 116, 6656 (2002).

2001

C. L. Yang, Z. H. Zhu, R. Wang, and X. Y. Liu, J. Mole. Structure (Theochem.) 548, 47 (2001).

C. Yang, Z. Zhu, and R. Wang, Chin. J. Atomic and Molecular Phys. 18, 355 (2001).

2000

J. Bieron and W. E. Baylis, Mole. Phys. 98, 1051 (2000).

1995

J. R. Bieron and W. E. Baylis, Chem. Phys. 197, 129 (1995).

1993

E. Czuchaj, F. Rebentrost, H. Stoll, and H. Preuss, Chem. Phys. Lett. 212, 534 (1993).

1988

H.-J. Werner and P. J. Knowles, J. Chem. Phys. 89, 5803 (1988).

P. J. Knowles and H.-J. Werner, J. Chem. Phys. Lett. 145, 514 (1988).

1981

V. E. Bondybed and J. H. English, J. Chemical Phys. 74, 6978 (1981).

1974

J. N. Murrell and K. S. Sorbe, J. Chem. Soc. Faraday Trans. 1552, 2 (1974).

Baylis, W. E.

J. Bieron and W. E. Baylis, Mole. Phys. 98, 1051 (2000).

J. R. Bieron and W. E. Baylis, Chem. Phys. 197, 129 (1995).

Bieron, J.

J. Bieron and W. E. Baylis, Mole. Phys. 98, 1051 (2000).

Bieron, J. R.

J. R. Bieron and W. E. Baylis, Chem. Phys. 197, 129 (1995).

Bondybed, V. E.

V. E. Bondybed and J. H. English, J. Chemical Phys. 74, 6978 (1981).

Czuchaj, E.

E. Czuchaj, F. Rebentrost, H. Stoll, and H. Preuss, Chem. Phys. Lett. 212, 534 (1993).

Ding, S.-L.

T.-Q. Ren, S.-L. Ding, and C.-L. Yang, J. Mole. Structure (Theochem.) 728, 159 (2005).

English, J. H.

V. E. Bondybed and J. H. English, J. Chemical Phys. 74, 6978 (1981).

Gao, F.

F. Gao, C.-L. Yang, and T.-Q. Ren, J. Mole. Structure (Theochem.) 758, 81 (2006).

Han, K. L.

C.-L. Yang, Y.-J. Huang, X. Zhang, and K. L. Han, J. Mole. Structure (Theochem.) 625, 289 (2003).

Han, K.-L.

C.-L. Yang, X. Zhang, and K.-L. Han, J. Mole. Structure (Theochem.) 676, 209 (2004).

C.-L. Yang, X. Zhang, and K.-L. Han, J. Mole. Structure (Theochem.) 678, 183 (2004).

Huang, Y.-J.

C.-L. Yang, Y.-J. Huang, X. Zhang, and K. L. Han, J. Mole. Structure (Theochem.) 625, 289 (2003).

Knowles, P. J.

P. J. Knowles and H.-J. Werner, J. Chem. Phys. Lett. 145, 514 (1988).

H.-J. Werner and P. J. Knowles, J. Chem. Phys. 89, 5803 (1988).

Liu, X. Y.

C. L. Yang, Z. H. Zhu, R. Wang, and X. Y. Liu, J. Mole. Structure (Theochem.) 548, 47 (2001).

Liu, Y.

Murrell, J. N.

J. N. Murrell and K. S. Sorbe, J. Chem. Soc. Faraday Trans. 1552, 2 (1974).

Preuss, H.

E. Czuchaj, F. Rebentrost, H. Stoll, and H. Preuss, Chem. Phys. Lett. 212, 534 (1993).

Rebentrost, F.

E. Czuchaj, F. Rebentrost, H. Stoll, and H. Preuss, Chem. Phys. Lett. 212, 534 (1993).

Ren, T. Q.

C. L. Yang, Z. H. Zhang, and T. Q. Ren, J. Chem. Phys. 116, 6656 (2002).

Ren, T.-Q.

F. Gao, C.-L. Yang, and T.-Q. Ren, J. Mole. Structure (Theochem.) 758, 81 (2006).

T.-Q. Ren, S.-L. Ding, and C.-L. Yang, J. Mole. Structure (Theochem.) 728, 159 (2005).

Shi, D.

Sorbe, K. S.

J. N. Murrell and K. S. Sorbe, J. Chem. Soc. Faraday Trans. 1552, 2 (1974).

Stoll, H.

E. Czuchaj, F. Rebentrost, H. Stoll, and H. Preuss, Chem. Phys. Lett. 212, 534 (1993).

Sun, J.

Wang, R.

C. Yang, Z. Zhu, and R. Wang, Chin. J. Atomic and Molecular Phys. 18, 355 (2001).

C. L. Yang, Z. H. Zhu, R. Wang, and X. Y. Liu, J. Mole. Structure (Theochem.) 548, 47 (2001).

Werner, H.-J.

H.-J. Werner and P. J. Knowles, J. Chem. Phys. 89, 5803 (1988).

P. J. Knowles and H.-J. Werner, J. Chem. Phys. Lett. 145, 514 (1988).

Yang, C.

C. Yang, Z. Zhu, and R. Wang, Chin. J. Atomic and Molecular Phys. 18, 355 (2001).

Yang, C. L.

C. L. Yang, Z. H. Zhang, and T. Q. Ren, J. Chem. Phys. 116, 6656 (2002).

C. L. Yang, Z. H. Zhu, R. Wang, and X. Y. Liu, J. Mole. Structure (Theochem.) 548, 47 (2001).

Yang, C.-L.

F. Gao, C.-L. Yang, and T.-Q. Ren, J. Mole. Structure (Theochem.) 758, 81 (2006).

T.-Q. Ren, S.-L. Ding, and C.-L. Yang, J. Mole. Structure (Theochem.) 728, 159 (2005).

C.-L. Yang, X. Zhang, and K.-L. Han, J. Mole. Structure (Theochem.) 676, 209 (2004).

C.-L. Yang, X. Zhang, and K.-L. Han, J. Mole. Structure (Theochem.) 678, 183 (2004).

C.-L. Yang, Y.-J. Huang, X. Zhang, and K. L. Han, J. Mole. Structure (Theochem.) 625, 289 (2003).

Yang, X.

Zhang, X.

C.-L. Yang, X. Zhang, and K.-L. Han, J. Mole. Structure (Theochem.) 676, 209 (2004).

C.-L. Yang, X. Zhang, and K.-L. Han, J. Mole. Structure (Theochem.) 678, 183 (2004).

C.-L. Yang, Y.-J. Huang, X. Zhang, and K. L. Han, J. Mole. Structure (Theochem.) 625, 289 (2003).

Zhang, Z. H.

C. L. Yang, Z. H. Zhang, and T. Q. Ren, J. Chem. Phys. 116, 6656 (2002).

Zhu, Z.

D. Shi, Y. Liu, J. Sun, Z. Zhu, and X. Yang, Chin. Opt. Lett. 3, 683 (2005).

C. Yang, Z. Zhu, and R. Wang, Chin. J. Atomic and Molecular Phys. 18, 355 (2001).

Zhu, Z. H.

C. L. Yang, Z. H. Zhu, R. Wang, and X. Y. Liu, J. Mole. Structure (Theochem.) 548, 47 (2001).

Chem. Phys.

J. R. Bieron and W. E. Baylis, Chem. Phys. 197, 129 (1995).

Chem. Phys. Lett.

E. Czuchaj, F. Rebentrost, H. Stoll, and H. Preuss, Chem. Phys. Lett. 212, 534 (1993).

Chin. J. Atomic and Molecular Phys.

C. Yang, Z. Zhu, and R. Wang, Chin. J. Atomic and Molecular Phys. 18, 355 (2001).

Chin. Opt. Lett.

J. Chem. Phys.

C. L. Yang, Z. H. Zhang, and T. Q. Ren, J. Chem. Phys. 116, 6656 (2002).

H.-J. Werner and P. J. Knowles, J. Chem. Phys. 89, 5803 (1988).

J. Chem. Phys. Lett.

P. J. Knowles and H.-J. Werner, J. Chem. Phys. Lett. 145, 514 (1988).

J. Chem. Soc. Faraday Trans.

J. N. Murrell and K. S. Sorbe, J. Chem. Soc. Faraday Trans. 1552, 2 (1974).

J. Chemical Phys.

V. E. Bondybed and J. H. English, J. Chemical Phys. 74, 6978 (1981).

J. Mole. Structure (Theochem.)

F. Gao, C.-L. Yang, and T.-Q. Ren, J. Mole. Structure (Theochem.) 758, 81 (2006).

C. L. Yang, Z. H. Zhu, R. Wang, and X. Y. Liu, J. Mole. Structure (Theochem.) 548, 47 (2001).

C.-L. Yang, Y.-J. Huang, X. Zhang, and K. L. Han, J. Mole. Structure (Theochem.) 625, 289 (2003).

C.-L. Yang, X. Zhang, and K.-L. Han, J. Mole. Structure (Theochem.) 678, 183 (2004).

C.-L. Yang, X. Zhang, and K.-L. Han, J. Mole. Structure (Theochem.) 676, 209 (2004).

T.-Q. Ren, S.-L. Ding, and C.-L. Yang, J. Mole. Structure (Theochem.) 728, 159 (2005).

Mole. Phys.

J. Bieron and W. E. Baylis, Mole. Phys. 98, 1051 (2000).

Other

H.-J. Werner, P. J. Knowles, R. Lindh, F. R. Manby, M. Schutz, P. Celani, T. Korona, G. Kauhut, R. D. Amos, A. Bernhardsson, A. Berning, D. L. Cooper, M. J. O. Deegan, A. J. Dobbyn, F. Eckert, C. Hample, G. Hetzer, A. W. Loyd, S. J. McNichdas, W. Meyer, M. E. Mura, A. Nicklas, P. Dalmieri, R. Pitzer, V. Schumann, H. Stoll, A. J. Stone, R. Tarroni, and T. Thorsteinsson, MOLPRO, Birmingham University, Cardiff University (2002).

R. J. Le Roy, level7.5: A Computer Program for Solving the Radial Schrodinger Equation for Bound and Quasibound Levels Chemical Physics Research Report No. CP-642R, University of Waterloo (2002).

Dawning4000A is a large parallel compute containing 134 CPUs (AMD Opteron 64-bit 1.8 GHz) in Ludong University. It is based on Turbo Linux 8.0 and implements with Molpro2002, Gaussian03, Molcas 5.0 and so on.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.