Abstract

Development of a fiber laser pumped, compact mid-infrared (IR) difference frequency spectrometer employing a periodically poled LiNbO3 (PPLN) for next generation environmental monitoring is presented. Previous spectroscopic experiments of various gas species, performance characteristics of pump and signal lasers and PPLN-based difference frequency generation (DFG) are reviewed. The DFG spectrometers developed in our facility were carefully calibrated with concentrations between a few ppm and 500 ppm, and demonstrated with an excellent linearity. Moreover, a ratio between measurement deviation and gas concentration was approximately +-1%, which could maintain in a long-term measurement operation (~1000 h). Rapid gas detection for N2O, CH4, CO2, NO2, and NH3 with a total measurement time of less than 10 s was achieved with interference completely free from absorption spectra of other gas species, resulting in minimum detectable concentration at sub ppm level. Also, real-time NO2 monitoring of an exhaust gas of a diesel engine is demonstrated, and a simultaneous dual gas detection concept by the DFG is introduced.

© 2007 Chinese Optics Letters

PDF Article

References

  • View by:
  • |
  • |

  1. M. W. Sigrist, in Encyclopedia of Environmental Analysis and Remediation R. A. Meyers, (ed.) (John Wiley and Sons, New Jersey, 1998) p.84.
  2. H. Sasada, S. Takeuchi, M. Iritani, and K. Nakatani, J. Opt. Soc. Am. B 8, 713 (1991).
  3. K. Uehara and H. Tai, Appl. Opt. 31, 809 (1992).
  4. M. E. Webber, S. Kim, S. T. Sanders, D. S. Baer, R. K. Hanson, and Y. Ikeda, Appl. Opt. 40, 821 (2001).
  5. M. E. Webber, D. S. Baer, and R. K. Hanson, Appl. Opt. 40, 2031 (2001).
  6. J. Reid, J. Shewchun, B. K. Garside, and E. A. Ballik, Appl. Opt. 17, 300 (1978).
  7. A. A. Kosterev, F. K. Tittel, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, Appl. Opt. 39, 6866 (2000).
  8. L. Goldberg, W. K. Burns, and R. W. McElhanon, Appl. Phys. Lett. 67, 2910 (1995).
  9. A. Balakrishman, S. Sanders, D. DeMars, J. Webjorn, D. W. Nam, R. J. Lang, D. G. Mehuys, R. G. Waarts, and D. F. Welch, Opt. Lett. 21, 952 (1996).
  10. D. Richter, D. G. Lancaster, and F. K. Tittel, Appl. Opt. 39, 4444 (2000).
  11. D. G. Lancaster, R. Weidner, D. Richter, F. K. Tittel, and J. Limpert, Opt. Commun. 175, 461 (2000).
  12. Y. Mine, N. Melander, D. Richer, D. G. Lancaster, K. P. Petrov, R. F. Curl, and F. K. Tittel, Appl. Phys. B 6, 5771 (1997).
  13. D. Richter and P. Weibring, Appl. Phys. B 82, 479 (2006).
  14. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).
  15. H. Ashizawa, S. Yamaguchi, M. Endo, S. Ohara, M. Takahashi, K. Nanri, and T. Fujioka, Rev. Laser Eng. 31, 151 (2003).
  16. Y. Nishida, H. Miyazawa, M. Asobe, O. Tadanaga, and H. Suzuki, Electron. Lett. 39, 609 (2003).
  17. T. Yanagawa, O. Tadanaga, K. Magari, Y. Nishida, H. Miyazawa, M. Asobe, and H. Suzuki, Appl. Phys. Lett. 89, 221115 (2006).
  18. O. Tadanaga, Y. Nishida, T. Yanagawa, H. Miyazawa, K. Magari, T. Umeki, K. Yoshino, M. Asobe, and H. Suzuki, Electron. Lett. 42, 988 (2006).

2006 (3)

D. Richter and P. Weibring, Appl. Phys. B 82, 479 (2006).

T. Yanagawa, O. Tadanaga, K. Magari, Y. Nishida, H. Miyazawa, M. Asobe, and H. Suzuki, Appl. Phys. Lett. 89, 221115 (2006).

O. Tadanaga, Y. Nishida, T. Yanagawa, H. Miyazawa, K. Magari, T. Umeki, K. Yoshino, M. Asobe, and H. Suzuki, Electron. Lett. 42, 988 (2006).

2003 (2)

H. Ashizawa, S. Yamaguchi, M. Endo, S. Ohara, M. Takahashi, K. Nanri, and T. Fujioka, Rev. Laser Eng. 31, 151 (2003).

Y. Nishida, H. Miyazawa, M. Asobe, O. Tadanaga, and H. Suzuki, Electron. Lett. 39, 609 (2003).

2001 (2)

2000 (3)

1997 (1)

Y. Mine, N. Melander, D. Richer, D. G. Lancaster, K. P. Petrov, R. F. Curl, and F. K. Tittel, Appl. Phys. B 6, 5771 (1997).

1996 (1)

1995 (1)

L. Goldberg, W. K. Burns, and R. W. McElhanon, Appl. Phys. Lett. 67, 2910 (1995).

1992 (2)

K. Uehara and H. Tai, Appl. Opt. 31, 809 (1992).

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).

1991 (1)

1978 (1)

Appl. Opt. (6)

Appl. Phys. B (2)

Y. Mine, N. Melander, D. Richer, D. G. Lancaster, K. P. Petrov, R. F. Curl, and F. K. Tittel, Appl. Phys. B 6, 5771 (1997).

D. Richter and P. Weibring, Appl. Phys. B 82, 479 (2006).

Appl. Phys. Lett. (2)

T. Yanagawa, O. Tadanaga, K. Magari, Y. Nishida, H. Miyazawa, M. Asobe, and H. Suzuki, Appl. Phys. Lett. 89, 221115 (2006).

L. Goldberg, W. K. Burns, and R. W. McElhanon, Appl. Phys. Lett. 67, 2910 (1995).

Electron. Lett. (2)

O. Tadanaga, Y. Nishida, T. Yanagawa, H. Miyazawa, K. Magari, T. Umeki, K. Yoshino, M. Asobe, and H. Suzuki, Electron. Lett. 42, 988 (2006).

Y. Nishida, H. Miyazawa, M. Asobe, O. Tadanaga, and H. Suzuki, Electron. Lett. 39, 609 (2003).

IEEE J. Quantum Electron. (1)

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE J. Quantum Electron. 28, 2631 (1992).

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

D. G. Lancaster, R. Weidner, D. Richter, F. K. Tittel, and J. Limpert, Opt. Commun. 175, 461 (2000).

Opt. Lett. (1)

Rev. Laser Eng. (1)

H. Ashizawa, S. Yamaguchi, M. Endo, S. Ohara, M. Takahashi, K. Nanri, and T. Fujioka, Rev. Laser Eng. 31, 151 (2003).

Other (1)

M. W. Sigrist, in Encyclopedia of Environmental Analysis and Remediation R. A. Meyers, (ed.) (John Wiley and Sons, New Jersey, 1998) p.84.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.