Abstract

A finite difference scheme based on the polynomial interpolation is constructed to solve the quasi-vector equations for optical waveguides with step-index profiles. The discontinuities of the normal components of the electric field across abrupt dielectric interfaces are taken into account. The numerical results include the polarization effects, but the memory requirement is the same as in solving the scalar wave equation. Moreover, the proposed finite difference scheme can be applied to both uniform and non-uniform mesh grids. The modal propagation constants and field distributions for a buried rectangular waveguide and a rib waveguide are presented. Solutions are compared favorably with those obtained by the numerical approaches published earlier.

© 2006 Chinese Optics Letters

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription