Abstract

A finite difference scheme based on the polynomial interpolation is constructed to solve the quasi-vector equations for optical waveguides with step-index profiles. The discontinuities of the normal components of the electric field across abrupt dielectric interfaces are taken into account. The numerical results include the polarization effects, but the memory requirement is the same as in solving the scalar wave equation. Moreover, the proposed finite difference scheme can be applied to both uniform and non-uniform mesh grids. The modal propagation constants and field distributions for a buried rectangular waveguide and a rib waveguide are presented. Solutions are compared favorably with those obtained by the numerical approaches published earlier.

© 2006 Chinese Optics Letters

PDF Article

References

  • View by:
  • |

  1. C. Vassallo, Opt. Quantum Electron. 29, 95 (1997).
  2. R. Scarmozzino, A. Gopinath, R. Pregla, and S. Helfert, IEEE J. Sel. Top. Quantum Electron. 6, 150 (2000).
  3. S. Guo, F. Wu, S. Albin, H. Tai, and R. Rogowski, Opt. Express 12, 3341 (2004).
  4. K. Saitoh, M. Koshiba, and Y. Tsuji, J. Lightwave Technol. 17, 255 (1999).
  5. J. Xiao, X. Sun, M. Zhang, and D. Ding, Acta Opt. Sin. (in Chinese) 22, 201 (2002).
  6. J. Xiao, X. Sun, and M. Zhang, J. Opt. Soc. Am. B 21, 798 (2004).
  7. E. Schweig and W. B. Bridges, IEEE Trans. Microwave Theory and Techniques 32, 531 (1984).
  8. G. R. Hadley and R. E. Smith, J. Lightwave Technol. 13, 465 (1995).
  9. P. Lusse, K. Ramm, H.-G. Unger, and J. Schule, Opt. Quantum Electron. 29, 115 (1997).
  10. D. Jimenez and F. Perez-Murano, J. Opt. Soc. Am. A 18, 2015 (2001).
  11. M. S. Stern, IEE Proceedings J 138, 185 (1991).
  12. S. Sujecki, T. M. Benson, P. Sewell, and P. C. Kendall, J. Lightwave Technol. 16, 1329 (1998).
  13. W. P. Huang and C. L. Xu, IEEE J. Quantum Electron. 29, 2639 (1993).

Acta Opt. Sin. (in Chinese) (1)

J. Xiao, X. Sun, M. Zhang, and D. Ding, Acta Opt. Sin. (in Chinese) 22, 201 (2002).

IEE Proceedings J (1)

M. S. Stern, IEE Proceedings J 138, 185 (1991).

IEEE J. Quantum Electron. (1)

W. P. Huang and C. L. Xu, IEEE J. Quantum Electron. 29, 2639 (1993).

IEEE J. Sel. Top. Quantum Electron. (1)

R. Scarmozzino, A. Gopinath, R. Pregla, and S. Helfert, IEEE J. Sel. Top. Quantum Electron. 6, 150 (2000).

IEEE Trans. Microwave Theory and Techniques (1)

E. Schweig and W. B. Bridges, IEEE Trans. Microwave Theory and Techniques 32, 531 (1984).

J. Lightwave Technol. (3)

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Opt. Express (1)

Opt. Quantum Electron. (2)

C. Vassallo, Opt. Quantum Electron. 29, 95 (1997).

P. Lusse, K. Ramm, H.-G. Unger, and J. Schule, Opt. Quantum Electron. 29, 115 (1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.