Abstract

The optical properties of a five-level atomic system composed of a 'Lambda'-type four-level atomic and a tripod four-level atomic systems are investigated. It is found that the behaviors of electromagnetically induced transparency (EIT) and group velocity can be controlled by choosing appropriate parameters with the interacting dark resonances. In particular, when all the fields are on resonance, the slow light at the symmetric transparency windows with a much broader EIT width is obtained by tuning the intensity of the coupling field in comparison with its sub-system, which provides potential applications in quantum storage and retrieval of light.

© 2006 Chinese Optics Letters

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription