Abstract

Annular subaperture interferometry (ASI) has been developed for low cost and flexible test of rotationally symmetric aspheric surfaces, in which accurately combining the subaperture measurement data corrupted by misalignments and noise into a complete surface figure is the key problem. By introducing the Zernike annular polynomials which are orthogonal over annulus, a method that eliminates the coupling problem in the earlier algorithm based on Zernike circle polynomials is proposed. Vector-matrix notation is used to simplify the description and calculations. The performance of this reduction method is evaluated by numerical simulation. The results prove this method with high precision and good anti-noise capability.

© 2005 Chinese Optics Letters

PDF Article

References

  • View by:
  • |

  1. C.-J. Kim, Appl. Opt. 21, 4521 (1982).
  2. J. G. Thunen and O. Y. Kwon, Proc. SPIE 351, 19 (1982).
  3. J. E. Negro, Appl. Opt. 23, 1921 (1984).
  4. Y. M. Liu, G. N. Lawrence, and C. L. Koliopoulos, Appl. Opt. 27, 4504 (1988).
  5. M. Melozzi, L. Pezzati, and A. Mazzoni, Opt. Eng. 32, 1073 (1993).
  6. F. Granados-Agustin, J. F. Escobar-Romero, and A. Cornejo-Rodriguez, Opt. Rev. 11, 82 (2004).
  7. X. Hou, F. Wu, S. Wu, and Q. Chen, Proc. SPIE 5638, 992 (2005).
  8. S. C. Jensen, W. W. Chow, and G. N. Lawrence, Appl. Opt. 23, 740 (1984).
  9. C. R. De Hainaut and A. Erteza, Appl. Opt. 25, 503 (1986).
  10. G. N. Lawrence and R. D. Day, Appl. Opt. 26, 4875 (1987).
  11. M. Otsubo, K. Okada, and J. Tsujiuchi, Opt. Eng. 33, 608 (1994).
  12. T. Hansel, A. Nickel, and A. Schindler, Proc. SPIE 4449, 265 (2001).
  13. M. Bray, Proc. SPIE 3134, 39 (1997).
  14. P. Murphy, G. Forbes, J. Fleig, P. Dumas, and M. Tricard, Opt. Photon. News 14, (5) 38 (2003).
  15. P. E. Murphy, J. Fleig, G. Forbes, and M. Tricard, Proc. SPIE 5786, 112 (2005).
  16. V. N. Mahajan, J. Opt. Soc. Am. 71, 75 (1981).
  17. J. C. Wyant, Zernike Polynomial (Optical Science Center, University of Arizona, Tucson, 1999) http://www.optics.arizona.edu/jcwyant/Zernikes/ZernikePolynomials.htm.
  18. The Mathematica software is developed by the Wolfram Research, Inc., http://www.wolfram.com.
  19. X. Hou, F. Wu, S. B. Wu, and Q. Chen, Journal of Sichuan University (Natural Science Edition) (in Chinese) 42, 305 (2005).

Appl. Opt. (6)

J. Opt. Soc. Am. (1)

Journal of Sichuan University (Natural Science Edition) (in Chinese) (1)

X. Hou, F. Wu, S. B. Wu, and Q. Chen, Journal of Sichuan University (Natural Science Edition) (in Chinese) 42, 305 (2005).

Opt. Eng. (2)

M. Melozzi, L. Pezzati, and A. Mazzoni, Opt. Eng. 32, 1073 (1993).

M. Otsubo, K. Okada, and J. Tsujiuchi, Opt. Eng. 33, 608 (1994).

Opt. Photon. News (1)

P. Murphy, G. Forbes, J. Fleig, P. Dumas, and M. Tricard, Opt. Photon. News 14, (5) 38 (2003).

Opt. Rev. (1)

F. Granados-Agustin, J. F. Escobar-Romero, and A. Cornejo-Rodriguez, Opt. Rev. 11, 82 (2004).

Proc. SPIE (5)

X. Hou, F. Wu, S. Wu, and Q. Chen, Proc. SPIE 5638, 992 (2005).

T. Hansel, A. Nickel, and A. Schindler, Proc. SPIE 4449, 265 (2001).

M. Bray, Proc. SPIE 3134, 39 (1997).

P. E. Murphy, J. Fleig, G. Forbes, and M. Tricard, Proc. SPIE 5786, 112 (2005).

J. G. Thunen and O. Y. Kwon, Proc. SPIE 351, 19 (1982).

Other (2)

J. C. Wyant, Zernike Polynomial (Optical Science Center, University of Arizona, Tucson, 1999) http://www.optics.arizona.edu/jcwyant/Zernikes/ZernikePolynomials.htm.

The Mathematica software is developed by the Wolfram Research, Inc., http://www.wolfram.com.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.