Abstract

An investigation of the cluster size dependence of the maximum energy of protons ejected from explosion of methane clusters in an intense femtosecond laser field has been conducted on the basis of the cluster size estimation by Rayleigh scattering measurements. The interaction of a 2*10^(16)-W/cm2 intense laser pulse (790 nm, 60 fs) with the methane clusters revealed that the clusters were Coulomb exploded and the maximum energy (E_(max)) of the protons produced was linearly proportional to the square of the cluster radius (r_(c)^(2)). In a cluster size range, with the methane cluster radii up to about 3 nm, the established relation of E_(max) and r_(c)^(2) was found to be E_(max) (keV) = 3.3+0.75r_(c)^(2) (nm2), in good agreement with the simulation results. This demonstrated that Coulomb explosion of ionic clusters (C^(+4)H^(+)_(4))_(n) took place following the cluster vertical ionization in the laser-cluster interaction.

© 2005 Chinese Optics Letters

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription