Abstract

Roughly, visual tracking algorithms can be divided into two main classes: deterministic tracking and stochastic tracking. Mean shift and particle filter are their typical representatives, respectively. Recently, a hybrid tracker, seamlessly integrating the respective advantages of mean shift and particle filter (MSPF) has achieved impressive success in robust tracking. The pivot of MSPF is to sample fewer particles using particle filter and then those particles are shifted to their respective local maximum of target searching space by mean shift. MSPF not only can greatly reduce the number of particles that particle filter required, but can remedy the deficiency of mean shift. Unfortunately, due to its inherent principle, MSPF is restricted to those applications with little changes of the target model. To make MSPF more flexible and robust, an adaptive target model is extended to MSPF in this paper. Experimental results show that MSPF with target model updating can robustly track the target through the whole sequences regardless of the change of target model.

© 2006 Chinese Optics Letters

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Comaniciu, V. Ramesh, and P. Meer, IEEE Trans. Patt. Analy. and Mach. Intell. 25, 564 (2003).
  2. M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, IEEE Trans. Signal Processing 50, 174 (2002).
  3. K. Nummiaro, E. Koller-Meier, and L. V. Gool, Image and Vision Computing 21, 99 (2003).
  4. C. Shan, Y. Wei, T. Tan, and F. Ojardias, in The Proceedings of 6th International Conference on Automatic Face and Gesture Recognition (2004).
  5. E. Maggio and A. Cavallaro, in Proceedings of IEEE Signal Processing Society International Conference on Acoustics, Speech, and Signal Processing Philadelphia USA (2005).
  6. S. Birchfield, in Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition California, USA (1998).
  7. M. Isard and A. Blake, Int. J. Computer Vision 29, 5 (1998).
  8. P. Li, T. Zhang, and A. E. C. Pece, Image and Vision Computing 21, 111 (2003).

2003 (3)

D. Comaniciu, V. Ramesh, and P. Meer, IEEE Trans. Patt. Analy. and Mach. Intell. 25, 564 (2003).

K. Nummiaro, E. Koller-Meier, and L. V. Gool, Image and Vision Computing 21, 99 (2003).

P. Li, T. Zhang, and A. E. C. Pece, Image and Vision Computing 21, 111 (2003).

2002 (1)

M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, IEEE Trans. Signal Processing 50, 174 (2002).

1998 (1)

M. Isard and A. Blake, Int. J. Computer Vision 29, 5 (1998).

Arulampalam, M. S.

M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, IEEE Trans. Signal Processing 50, 174 (2002).

Blake, A.

M. Isard and A. Blake, Int. J. Computer Vision 29, 5 (1998).

Clapp, T.

M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, IEEE Trans. Signal Processing 50, 174 (2002).

Comaniciu, D.

D. Comaniciu, V. Ramesh, and P. Meer, IEEE Trans. Patt. Analy. and Mach. Intell. 25, 564 (2003).

Gool, L. V.

K. Nummiaro, E. Koller-Meier, and L. V. Gool, Image and Vision Computing 21, 99 (2003).

Gordon, N.

M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, IEEE Trans. Signal Processing 50, 174 (2002).

Isard, M.

M. Isard and A. Blake, Int. J. Computer Vision 29, 5 (1998).

Koller-Meier, E.

K. Nummiaro, E. Koller-Meier, and L. V. Gool, Image and Vision Computing 21, 99 (2003).

Li, P.

P. Li, T. Zhang, and A. E. C. Pece, Image and Vision Computing 21, 111 (2003).

Maskell, S.

M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, IEEE Trans. Signal Processing 50, 174 (2002).

Meer, P.

D. Comaniciu, V. Ramesh, and P. Meer, IEEE Trans. Patt. Analy. and Mach. Intell. 25, 564 (2003).

Nummiaro, K.

K. Nummiaro, E. Koller-Meier, and L. V. Gool, Image and Vision Computing 21, 99 (2003).

Pece, A. E. C.

P. Li, T. Zhang, and A. E. C. Pece, Image and Vision Computing 21, 111 (2003).

Ramesh, V.

D. Comaniciu, V. Ramesh, and P. Meer, IEEE Trans. Patt. Analy. and Mach. Intell. 25, 564 (2003).

Zhang, T.

P. Li, T. Zhang, and A. E. C. Pece, Image and Vision Computing 21, 111 (2003).

IEEE Trans. Patt. Analy. and Mach. Intell. (1)

D. Comaniciu, V. Ramesh, and P. Meer, IEEE Trans. Patt. Analy. and Mach. Intell. 25, 564 (2003).

IEEE Trans. Signal Processing (1)

M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, IEEE Trans. Signal Processing 50, 174 (2002).

Image and Vision Computing (2)

K. Nummiaro, E. Koller-Meier, and L. V. Gool, Image and Vision Computing 21, 99 (2003).

P. Li, T. Zhang, and A. E. C. Pece, Image and Vision Computing 21, 111 (2003).

Int. J. Computer Vision (1)

M. Isard and A. Blake, Int. J. Computer Vision 29, 5 (1998).

Other (3)

C. Shan, Y. Wei, T. Tan, and F. Ojardias, in The Proceedings of 6th International Conference on Automatic Face and Gesture Recognition (2004).

E. Maggio and A. Cavallaro, in Proceedings of IEEE Signal Processing Society International Conference on Acoustics, Speech, and Signal Processing Philadelphia USA (2005).

S. Birchfield, in Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition California, USA (1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.