Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Chinese Optics Letters
  • Vol. 3,
  • Issue S1,
  • pp. S156-S158
  • (2005)

Effects of layer structure of the skin on the measured signal by optical coherence tomography

Not Accessible

Your library or personal account may give you access

Abstract

Optical coherence tomography (OCT) is a noninvasive cross-sectional imaging modality capable of measuring tissue morphology and function with high spatial resolution. Both the amplitude and the phase of the interometric heterodyne signal can be exploited to obtain the profile of sample reflectivity related to its microstructure and the bi-directional blood flowing velocity information. The fact that the skin and human mucosa have a layer structure suggests that the backscattered signal from tissue arises from two sources. The first is the scattering particles within the tissue. The second is the Fresnel refraction on the interface between two layers. However, the analysis available only considers one aspect of the backscattering sources. In this paper, we report an analysis that is based on the combination of both the particle scattering within the tissue and the Fresnel reflection on the interfaces between two layers. The new model is more reasonable for establishing the relationship between the signal detected by OCT scanner and tissue structures.

© 2005 Chinese Optics Letters

PDF Article
More Like This
Multimodal photoacoustic and optical coherence tomography scanner using an all optical detection scheme for 3D morphological skin imaging

Edward Z. Zhang, Boris Povazay, Jan Laufer, Aneesh Alex, Bernd Hofer, Barbara Pedley, Carl Glittenberg, Bradley Treeby, Ben Cox, Paul Beard, and Wolfgang Drexler
Biomed. Opt. Express 2(8) 2202-2215 (2011)

Real-time deep learning assisted skin layer delineation in dermal optical coherence tomography

Xuan Liu, Nadiya Chuchvara, Yuwei Liu, and Babar Rao
OSA Continuum 4(7) 2008-2023 (2021)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved