Abstract

A 40-Gb/s optical time division multiplexing (OTDM) return-to-zero (RZ) transmission experiments including a dynamic polarization mode dispersion (PMD) compensation was reported. The dynamic PMD compensator is made up of two-stage four degrees of freedom (DOF). The first stage adopts polarization controller and fixed time-delayed line. The second stage is variable differential group delay (DGD) element. The PMD monitoring technique is based on degree of polarization (DOP) as error signal. A novel practical adaptive optimization algorithm was introduced in dynamic adaptive PMD compensation. The experimental results show that the performance of the PMD compensator is excellent for 40-Gb/s RZ transmission systems with the large DGD. With this compensator, a significant improvement of system performance can be achieved in the eye pattern of a received signal. The first-order compensating ability of the compensator is greater than 30 ps. The second-order compensating ability is greater than 200 ps2. The first-order optimum compensating time is within 10 ms. The second-order optimum compensating time is within 24 ms.

© 2005 Chinese Optics Letters

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Noe, D. Sandel, and V. Mirvoda, Quantum Electron. 10, 341 (2004).
  2. M. G. Wang, T. J. Li, and S. S. Jian, Acta Opt. Sin. 24, 512 (2004).
  3. M. C. de Lignie, H. G. J. Nagel, and M. O. van Deventer, J. Lightwave Technol. 12, 1325 (1994).
  4. M. G. Wang, T. J. Li, and S. S. Jian, Chin. Opt. Lett. 2, 203 (2004).
  5. M. G. Wang, T. J. Li, and S. S. Jian, Opt. Expr. 11, 2354 (2003).
  6. M. G. Wang, T. J. Li, and S. S. Jian, Acta Phys. Sin. 52, 2818 (2003).
  7. F. Cariali, F. Martini, P. Chiappa, and R. Ballentin, Electron. Lett. 36, 889 (2000).
  8. T. J. Li, M. G. Wang, and S. S. Jian, Chin. Opt. Lett. 2, 138 (2004).
  9. K. Ogaki, M. Nakada, T. Miyakawa, Y. Nagao, and K. Nishijima, in Proceedings of ECOC'2003 Mo3.7.5 (2003).

2004 (4)

R. Noe, D. Sandel, and V. Mirvoda, Quantum Electron. 10, 341 (2004).

M. G. Wang, T. J. Li, and S. S. Jian, Acta Opt. Sin. 24, 512 (2004).

M. G. Wang, T. J. Li, and S. S. Jian, Chin. Opt. Lett. 2, 203 (2004).

T. J. Li, M. G. Wang, and S. S. Jian, Chin. Opt. Lett. 2, 138 (2004).

2003 (2)

M. G. Wang, T. J. Li, and S. S. Jian, Opt. Expr. 11, 2354 (2003).

M. G. Wang, T. J. Li, and S. S. Jian, Acta Phys. Sin. 52, 2818 (2003).

2000 (1)

F. Cariali, F. Martini, P. Chiappa, and R. Ballentin, Electron. Lett. 36, 889 (2000).

1994 (1)

M. C. de Lignie, H. G. J. Nagel, and M. O. van Deventer, J. Lightwave Technol. 12, 1325 (1994).

Ballentin, R.

F. Cariali, F. Martini, P. Chiappa, and R. Ballentin, Electron. Lett. 36, 889 (2000).

Cariali, F.

F. Cariali, F. Martini, P. Chiappa, and R. Ballentin, Electron. Lett. 36, 889 (2000).

Chiappa, P.

F. Cariali, F. Martini, P. Chiappa, and R. Ballentin, Electron. Lett. 36, 889 (2000).

Deventer, M. O. van

M. C. de Lignie, H. G. J. Nagel, and M. O. van Deventer, J. Lightwave Technol. 12, 1325 (1994).

Jian, S. S.

T. J. Li, M. G. Wang, and S. S. Jian, Chin. Opt. Lett. 2, 138 (2004).

M. G. Wang, T. J. Li, and S. S. Jian, Acta Opt. Sin. 24, 512 (2004).

M. G. Wang, T. J. Li, and S. S. Jian, Chin. Opt. Lett. 2, 203 (2004).

M. G. Wang, T. J. Li, and S. S. Jian, Acta Phys. Sin. 52, 2818 (2003).

M. G. Wang, T. J. Li, and S. S. Jian, Opt. Expr. 11, 2354 (2003).

Li, T. J.

T. J. Li, M. G. Wang, and S. S. Jian, Chin. Opt. Lett. 2, 138 (2004).

M. G. Wang, T. J. Li, and S. S. Jian, Chin. Opt. Lett. 2, 203 (2004).

M. G. Wang, T. J. Li, and S. S. Jian, Acta Opt. Sin. 24, 512 (2004).

M. G. Wang, T. J. Li, and S. S. Jian, Acta Phys. Sin. 52, 2818 (2003).

M. G. Wang, T. J. Li, and S. S. Jian, Opt. Expr. 11, 2354 (2003).

Lignie, M. C. de

M. C. de Lignie, H. G. J. Nagel, and M. O. van Deventer, J. Lightwave Technol. 12, 1325 (1994).

Martini, F.

F. Cariali, F. Martini, P. Chiappa, and R. Ballentin, Electron. Lett. 36, 889 (2000).

Mirvoda, V.

R. Noe, D. Sandel, and V. Mirvoda, Quantum Electron. 10, 341 (2004).

Nagel, H. G. J.

M. C. de Lignie, H. G. J. Nagel, and M. O. van Deventer, J. Lightwave Technol. 12, 1325 (1994).

Noe, R.

R. Noe, D. Sandel, and V. Mirvoda, Quantum Electron. 10, 341 (2004).

Sandel, D.

R. Noe, D. Sandel, and V. Mirvoda, Quantum Electron. 10, 341 (2004).

Wang, M. G.

T. J. Li, M. G. Wang, and S. S. Jian, Chin. Opt. Lett. 2, 138 (2004).

M. G. Wang, T. J. Li, and S. S. Jian, Acta Opt. Sin. 24, 512 (2004).

M. G. Wang, T. J. Li, and S. S. Jian, Chin. Opt. Lett. 2, 203 (2004).

M. G. Wang, T. J. Li, and S. S. Jian, Acta Phys. Sin. 52, 2818 (2003).

M. G. Wang, T. J. Li, and S. S. Jian, Opt. Expr. 11, 2354 (2003).

Acta Opt. Sin. (1)

M. G. Wang, T. J. Li, and S. S. Jian, Acta Opt. Sin. 24, 512 (2004).

Acta Phys. Sin. (1)

M. G. Wang, T. J. Li, and S. S. Jian, Acta Phys. Sin. 52, 2818 (2003).

Chin. Opt. Lett. (2)

Electron. Lett. (1)

F. Cariali, F. Martini, P. Chiappa, and R. Ballentin, Electron. Lett. 36, 889 (2000).

J. Lightwave Technol. (1)

M. C. de Lignie, H. G. J. Nagel, and M. O. van Deventer, J. Lightwave Technol. 12, 1325 (1994).

Opt. Expr. (1)

M. G. Wang, T. J. Li, and S. S. Jian, Opt. Expr. 11, 2354 (2003).

Quantum Electron. (1)

R. Noe, D. Sandel, and V. Mirvoda, Quantum Electron. 10, 341 (2004).

Other (1)

K. Ogaki, M. Nakada, T. Miyakawa, Y. Nagao, and K. Nishijima, in Proceedings of ECOC'2003 Mo3.7.5 (2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.