Abstract

We have studied the influence of degenerate four wave mixing (FWM) on the performance of the multiwavelength continuous-wave (CW) optical source based on supercontinuum (SC). By suppressing degenerate FWM, a 100-channel SC CW optical source with 25-GHz spacing for 10-Gb/s dense wavelength division multiplexing (DWDM) systems is experimentally demonstrated. Confirmation is provided with the generation of CW channel with crosstalk of other channels less than -28 dB and the presentation of 10-Gb/s eye diagram and bit error rate (BER) performance.

© 2005 Chinese Optics Letters

PDF Article

References

  • View by:
  • |
  • |

  1. O. Boyraz and M. N. Islam, J. Lightwave Technol. 20, 1493 (2002).
  2. E. Yamada, H. Takara, T. Ohara, K. Sato, T. Morioka, K. Jinguji, M. Itoh, and M. Ishii, Electron. Lett. 37, 304 (2001).
  3. K. Imai, M. Kourogi, and M. Ohtsu, IEEE J. Quantum Electron. 34, 54 (1998).
  4. M. Teshima, K. Sato, and M. Koga, IEEE J. Quantum Electron. 34, 1588 (1998).
  5. A. V. Gusakov, V. P. Wadsworth, and J. Herrmann, in Quantum Electronics and Laser Science. (Vol.57 of OSA Trends in Optical Technology Series) (Optical Society of America, Washington, D. C., 2001) p.29.
  6. J. Wu, Y. Li, C. Lou, and Y. Gao, Int. J. Infrared Millim. Waves 21, 1085 (2000).
  7. N. I. Nikolov, T. Sorensen, O. Bang, and A. Bjarklev, J. Opt. Soc. Am. B 20, 2329 (2003).
  8. A. L. Gaeta, Opt. Lett. 27, 924 (2002).
  9. X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O'Shea, A. P. Shreenath, and R. Trebino, Opt. Lett. 27, 1174 (2002).
  10. G. P. Agrawal, Nonlinear Fiber Optics (2nd edn.) (Academic, New York, 1995).
  11. W. J. Wadsworth, N. Joly, J. C. Knight, T. A. Birks, F. Biancalana, and P. St. J. Russell, Opt. Express 12, 299 (2004).
  12. L. Huo, C. Lou, and Y. Gao, Chin. Phys. Lett. 22, 353 (2005).

2005 (1)

L. Huo, C. Lou, and Y. Gao, Chin. Phys. Lett. 22, 353 (2005).

2004 (1)

2003 (1)

2002 (3)

2001 (1)

E. Yamada, H. Takara, T. Ohara, K. Sato, T. Morioka, K. Jinguji, M. Itoh, and M. Ishii, Electron. Lett. 37, 304 (2001).

2000 (1)

J. Wu, Y. Li, C. Lou, and Y. Gao, Int. J. Infrared Millim. Waves 21, 1085 (2000).

1998 (2)

K. Imai, M. Kourogi, and M. Ohtsu, IEEE J. Quantum Electron. 34, 54 (1998).

M. Teshima, K. Sato, and M. Koga, IEEE J. Quantum Electron. 34, 1588 (1998).

Chin. Phys. Lett. (1)

L. Huo, C. Lou, and Y. Gao, Chin. Phys. Lett. 22, 353 (2005).

Electron. Lett. (1)

E. Yamada, H. Takara, T. Ohara, K. Sato, T. Morioka, K. Jinguji, M. Itoh, and M. Ishii, Electron. Lett. 37, 304 (2001).

IEEE J. Quantum Electron. (2)

K. Imai, M. Kourogi, and M. Ohtsu, IEEE J. Quantum Electron. 34, 54 (1998).

M. Teshima, K. Sato, and M. Koga, IEEE J. Quantum Electron. 34, 1588 (1998).

Int. J. Infrared Millim. Waves (1)

J. Wu, Y. Li, C. Lou, and Y. Gao, Int. J. Infrared Millim. Waves 21, 1085 (2000).

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

Opt. Express (1)

Opt. Lett. (2)

Other (2)

G. P. Agrawal, Nonlinear Fiber Optics (2nd edn.) (Academic, New York, 1995).

A. V. Gusakov, V. P. Wadsworth, and J. Herrmann, in Quantum Electronics and Laser Science. (Vol.57 of OSA Trends in Optical Technology Series) (Optical Society of America, Washington, D. C., 2001) p.29.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.