Abstract

Inductively coupled plasma (ICP) technology is a new advanced version of dry-etching technology compared with the widely used method of reactive ion etching (RIE). Plasma processing of the ICP technology is complicated due to the mixed reactions among discharge physics, chemistry and surface chemistry. Extensive experiments have been done and microoptical elements have been fabricated successfully, which proved that the ICP technology is very effective in dry etching of microoptical elements. In this paper, we present the detailed fabrication of microoptical fused silica phase gratings with ICP technology. Optimized condition has been found to control the etching process of ICP technology and to improve the etching quality of microoptical elements greatly. With the optimized condition, we have fabricated lots of good gratings with different periods, depths, and duty cycles. The fabricated gratings are very useful in fields such as spectrometer, high-efficient filter in wavelength-division-multiplexing system, etc..

© 2005 Chinese Optics Letters

PDF Article

References

  • View by:
  • |
  • |

  1. J. Turunen and F. Wyrowski, (eds.) Diffractive Optics for Industrial and Commercial Applications (Akademie Verlag, Berlin, 1997).
  2. A. G. Lopez and H. G. Craighead, Appl. Opt. 40, 2068 (2001).
  3. T. Clausnitzer, J. Limpert, K. Zollner, H. Zellmer, H. J. Fuchs, E. B. Kley, A. Tunnermann, M. Jup, and D. Ristau, Appl. Opt. 42, 6934 (2003).
  4. C. Zhou and L. Liu, Appl. Opt. 34, 5961 (1995).
  5. E. M. Strzelecka, G. D. Robinson, and L. A. Coldren, Microelectr. Eng. 35, 385 (1997).
  6. Y. Fu and N. K. A. Bryan, Appl. Opt. 40, 5872 (2001).
  7. C. Zhou, P. Xi, and S. Zhao, Proc. SPIE 4470, 138 (2001).
  8. S. T. Jung, H. S. Song, and H. S. Kim, Thin Solid Films 341, 188 (1999).
  9. R. J. Shul and G. B. McClellan, J. Vac. Sci. Technol. A 15, 1881 (1997).
  10. E. Gogolides and P. Vauvert, J. Appl. Phys. 88, 5570 (2000).
  11. H. Doh and Y. Horiike, Jpn. J. Appl. Phys. 40, 3419 (2001).
  12. C. J. Choi and O. S. Kwon, J. Vac. Sci. Technol. B 18, 811 (2000).
  13. P. Xi, C. Zhou, E. Dai, and L. Liu, Opt. Lett. 27, 228 (2002).
  14. E. Dai, C. Zhou, P. Xi, and L. Liu, Opt. Lett. 28, 1513 (2003).
  15. C. Zhou, J. Jia, and L. Liu, Opt. Lett. 28, 2174 (2003).
  16. J. Jia, C. Zhou, X. Sun, and L. Liu, Appl. Opt. 43, 2112 (2004).

2004 (1)

2003 (3)

2002 (1)

2001 (4)

H. Doh and Y. Horiike, Jpn. J. Appl. Phys. 40, 3419 (2001).

A. G. Lopez and H. G. Craighead, Appl. Opt. 40, 2068 (2001).

Y. Fu and N. K. A. Bryan, Appl. Opt. 40, 5872 (2001).

C. Zhou, P. Xi, and S. Zhao, Proc. SPIE 4470, 138 (2001).

2000 (2)

C. J. Choi and O. S. Kwon, J. Vac. Sci. Technol. B 18, 811 (2000).

E. Gogolides and P. Vauvert, J. Appl. Phys. 88, 5570 (2000).

1999 (1)

S. T. Jung, H. S. Song, and H. S. Kim, Thin Solid Films 341, 188 (1999).

1997 (2)

R. J. Shul and G. B. McClellan, J. Vac. Sci. Technol. A 15, 1881 (1997).

E. M. Strzelecka, G. D. Robinson, and L. A. Coldren, Microelectr. Eng. 35, 385 (1997).

1995 (1)

Appl. Opt. (5)

J. Appl. Phys. (1)

E. Gogolides and P. Vauvert, J. Appl. Phys. 88, 5570 (2000).

J. Vac. Sci. Technol. A (1)

R. J. Shul and G. B. McClellan, J. Vac. Sci. Technol. A 15, 1881 (1997).

J. Vac. Sci. Technol. B (1)

C. J. Choi and O. S. Kwon, J. Vac. Sci. Technol. B 18, 811 (2000).

Jpn. J. Appl. Phys. (1)

H. Doh and Y. Horiike, Jpn. J. Appl. Phys. 40, 3419 (2001).

Microelectr. Eng. (1)

E. M. Strzelecka, G. D. Robinson, and L. A. Coldren, Microelectr. Eng. 35, 385 (1997).

Opt. Lett. (3)

Proc. SPIE (1)

C. Zhou, P. Xi, and S. Zhao, Proc. SPIE 4470, 138 (2001).

Thin Solid Films (1)

S. T. Jung, H. S. Song, and H. S. Kim, Thin Solid Films 341, 188 (1999).

Other (1)

J. Turunen and F. Wyrowski, (eds.) Diffractive Optics for Industrial and Commercial Applications (Akademie Verlag, Berlin, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.