Abstract

The surface acoustic waves generated by a pulsed laser in pipes are studied by using the finite element method. The time domain waveforms of guided waves in three different thickness pipes are obtained in the near field. The numerical results denoted that the excited waves by a pulsed laser in a thin-walled pipe are typical lamb wave like in a thin plate, while in a thick pipe the main features of the surface waves are two kinds of waves: the surface skimming longitudinal wave and the Rayleigh wave, which will be useful in the applications in non-destructive evaluation of pipes.

© 2005 Chinese Optics Letters

PDF Article

References

  • View by:
  • |
  • |

  1. A. F. McDonal, Appl. Phys. Lett. 56, 230 (1990).
  2. X. Wang and X. Xu, Appl. Phys. A 23, 107 (2001).
  3. Z. H. Shen and S. Y. Zhang, Micro. Opt. Tech. Lett. 28, 364 (2001).
  4. B. Q. Xu, Z. H. Shen, J. Lu, X. W. Ni, and S. Y. Zhang, Int. J. Heat and Mass Transfer 46, 4963 (2003).
  5. D. N. Alleyne, M. Lowe, and P. Cawley, J. Appl. Mech. 65, 635 (1998).
  6. M. Lowe, D. N. Alleyne, and P. Cawley, J. Appl. Mech. 65, 649 (1998).
  7. J. J. Ditri and J. L. Rose, J. Appl. Phys. 72, 2589 (1992).
  8. W. M. Gao, C. Glorieux, and J. Thoen, J. Appl. Phys. 91, 5521 (2002).
  9. D. Clorennec and D. Royer, Appl Phys Lett. 82, 4608 (2003).
  10. B. Q. Xu, Z. H. Shen, X. W. Ni, J. J. Wang, J. F. Guan, and J. Lu, J. Appl. Phys. 95, 2116 (2004).

2004

B. Q. Xu, Z. H. Shen, X. W. Ni, J. J. Wang, J. F. Guan, and J. Lu, J. Appl. Phys. 95, 2116 (2004).

2003

D. Clorennec and D. Royer, Appl Phys Lett. 82, 4608 (2003).

B. Q. Xu, Z. H. Shen, J. Lu, X. W. Ni, and S. Y. Zhang, Int. J. Heat and Mass Transfer 46, 4963 (2003).

2002

W. M. Gao, C. Glorieux, and J. Thoen, J. Appl. Phys. 91, 5521 (2002).

2001

X. Wang and X. Xu, Appl. Phys. A 23, 107 (2001).

Z. H. Shen and S. Y. Zhang, Micro. Opt. Tech. Lett. 28, 364 (2001).

1998

D. N. Alleyne, M. Lowe, and P. Cawley, J. Appl. Mech. 65, 635 (1998).

M. Lowe, D. N. Alleyne, and P. Cawley, J. Appl. Mech. 65, 649 (1998).

1992

J. J. Ditri and J. L. Rose, J. Appl. Phys. 72, 2589 (1992).

1990

A. F. McDonal, Appl. Phys. Lett. 56, 230 (1990).

Appl Phys Lett.

D. Clorennec and D. Royer, Appl Phys Lett. 82, 4608 (2003).

Appl. Phys. A

X. Wang and X. Xu, Appl. Phys. A 23, 107 (2001).

Appl. Phys. Lett.

A. F. McDonal, Appl. Phys. Lett. 56, 230 (1990).

Int. J. Heat and Mass Transfer

B. Q. Xu, Z. H. Shen, J. Lu, X. W. Ni, and S. Y. Zhang, Int. J. Heat and Mass Transfer 46, 4963 (2003).

J. Appl. Mech.

D. N. Alleyne, M. Lowe, and P. Cawley, J. Appl. Mech. 65, 635 (1998).

M. Lowe, D. N. Alleyne, and P. Cawley, J. Appl. Mech. 65, 649 (1998).

J. Appl. Phys.

J. J. Ditri and J. L. Rose, J. Appl. Phys. 72, 2589 (1992).

W. M. Gao, C. Glorieux, and J. Thoen, J. Appl. Phys. 91, 5521 (2002).

B. Q. Xu, Z. H. Shen, X. W. Ni, J. J. Wang, J. F. Guan, and J. Lu, J. Appl. Phys. 95, 2116 (2004).

Micro. Opt. Tech. Lett.

Z. H. Shen and S. Y. Zhang, Micro. Opt. Tech. Lett. 28, 364 (2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.