Abstract

The gas content is one of the important bubble parameters. In this article, the gas content effect on the bubble motion is investigated by numerical simulation based on the spherical bubble model. The dependence of the bubble radius, oscillation velocity and the corresponding bubble energy on the gas content during the bubble pulsation is analyzed in detail according to differential equations of the bubble dynamics. The numerical calculations are shown that with the gas content remained in a cavity increasing, the corresponding bubble radii become larger. Further, both the maximum bubble radius and bubble energy show approximately linear-relation with the gas content during the first oscillation cycle, while in the second pulsation period they are observed non-linear with the gas content. In addition, with the gas content increasing, the bubble expanding and contracting velocities are both decreased, whereas the corresponding oscillation periods at the first two oscillations are obviously prolonged.

© 2005 Chinese Optics Letters

PDF Article

References

  • View by:
  • |
  • |

  1. J. C. Miller and D. B. Geohegan, Laser ablation: Mechanisms and Application (American Institute of Physics, New York, 1994).
  2. K. Obata, K. Sugioka, T. Akane, N. Aoki, K. Toyoda, and K. Midorikawa, Appl. Phys. A 73, 755 (2001).
  3. B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tunnermann, Appl. Phys. 63, 109 (1996).
  4. R. C. Issac, P. Gopinath, G. K. Varier, V. P. N. Nampoori, and C. P. G. Vallabhan, Appl. Phys. Lett. 73, 163 (1998).
  5. M. H. Niemz, Laser-Tissue Interactions: Fundamentals and Application (Springer-Verlag, Berlin, 1996) p.156.
  6. A. Vogel, S. Busch, and U. Parlitz, J. Acoust. Soc. Am. 100, 148 (1996).
  7. C. D. Ohl, T. Kurz, R. Geislier, O. Lindau, and W. Lauterborn, Phil. Trans. R. Soc. London Ser. A 357, 269 (1999).
  8. C. Herring, Theory of the Pulsation of the Gas Bubble Produced by an Underwater Explosion. (Columbia University Press, New York, 1941).
  9. L. Trilling, J. Appl. Phys. 23, 14 (1952).
  10. C. E. Bell and S. A. Landt, Appl. Phys. Lett. 10, 46 (1967).
  11. A. Vogel, W. Lauterborn, and R. Timm, J. Fluid Mech. 206, 299 (1989).
  12. B. Ward and D. C. Emmony, Appl. Phys. Lett. 59, 2228 (1991).
  13. A. G. Doukas, A. D. Zweig, J. K. Frisoli, R. Birngruber, and T. F. Deutsch, Appl. Phys. B 53, 237 (1991).
  14. H. Schoeffmann, H. Schmidt-Kloiber, and E. Reichel, J. Appl. Phys. 63, 46 (1988).
  15. R. Lord, Philos. Mag. 34, 94 (1917).

2001 (1)

K. Obata, K. Sugioka, T. Akane, N. Aoki, K. Toyoda, and K. Midorikawa, Appl. Phys. A 73, 755 (2001).

1999 (1)

C. D. Ohl, T. Kurz, R. Geislier, O. Lindau, and W. Lauterborn, Phil. Trans. R. Soc. London Ser. A 357, 269 (1999).

1998 (1)

R. C. Issac, P. Gopinath, G. K. Varier, V. P. N. Nampoori, and C. P. G. Vallabhan, Appl. Phys. Lett. 73, 163 (1998).

1996 (2)

A. Vogel, S. Busch, and U. Parlitz, J. Acoust. Soc. Am. 100, 148 (1996).

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tunnermann, Appl. Phys. 63, 109 (1996).

1991 (2)

B. Ward and D. C. Emmony, Appl. Phys. Lett. 59, 2228 (1991).

A. G. Doukas, A. D. Zweig, J. K. Frisoli, R. Birngruber, and T. F. Deutsch, Appl. Phys. B 53, 237 (1991).

1989 (1)

A. Vogel, W. Lauterborn, and R. Timm, J. Fluid Mech. 206, 299 (1989).

1988 (1)

H. Schoeffmann, H. Schmidt-Kloiber, and E. Reichel, J. Appl. Phys. 63, 46 (1988).

1967 (1)

C. E. Bell and S. A. Landt, Appl. Phys. Lett. 10, 46 (1967).

1952 (1)

L. Trilling, J. Appl. Phys. 23, 14 (1952).

1917 (1)

R. Lord, Philos. Mag. 34, 94 (1917).

Appl. Phys. (1)

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tunnermann, Appl. Phys. 63, 109 (1996).

Appl. Phys. A (1)

K. Obata, K. Sugioka, T. Akane, N. Aoki, K. Toyoda, and K. Midorikawa, Appl. Phys. A 73, 755 (2001).

Appl. Phys. B (1)

A. G. Doukas, A. D. Zweig, J. K. Frisoli, R. Birngruber, and T. F. Deutsch, Appl. Phys. B 53, 237 (1991).

Appl. Phys. Lett. (3)

B. Ward and D. C. Emmony, Appl. Phys. Lett. 59, 2228 (1991).

R. C. Issac, P. Gopinath, G. K. Varier, V. P. N. Nampoori, and C. P. G. Vallabhan, Appl. Phys. Lett. 73, 163 (1998).

C. E. Bell and S. A. Landt, Appl. Phys. Lett. 10, 46 (1967).

J. Acoust. Soc. Am. (1)

A. Vogel, S. Busch, and U. Parlitz, J. Acoust. Soc. Am. 100, 148 (1996).

J. Appl. Phys. (2)

L. Trilling, J. Appl. Phys. 23, 14 (1952).

H. Schoeffmann, H. Schmidt-Kloiber, and E. Reichel, J. Appl. Phys. 63, 46 (1988).

J. Fluid Mech. (1)

A. Vogel, W. Lauterborn, and R. Timm, J. Fluid Mech. 206, 299 (1989).

Phil. Trans. R. Soc. London Ser. A (1)

C. D. Ohl, T. Kurz, R. Geislier, O. Lindau, and W. Lauterborn, Phil. Trans. R. Soc. London Ser. A 357, 269 (1999).

Philos. Mag. (1)

R. Lord, Philos. Mag. 34, 94 (1917).

Other (3)

C. Herring, Theory of the Pulsation of the Gas Bubble Produced by an Underwater Explosion. (Columbia University Press, New York, 1941).

M. H. Niemz, Laser-Tissue Interactions: Fundamentals and Application (Springer-Verlag, Berlin, 1996) p.156.

J. C. Miller and D. B. Geohegan, Laser ablation: Mechanisms and Application (American Institute of Physics, New York, 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.