Abstract

Talbot effect of a grating with different flaws is analyzed with the finite-difference time-domain (FDTD) method. The FDTD method can show the exact near-field distribution of different flaws in a high-density grating, which is impossible to obtain with the conventional Fourier transform method. The numerical results indicate that if a grating is perfect, its Talbot imaging should also be perfect; if the grating is distorted, its Talbot imaging would also be distorted. Furthermore, we can evaluate high density gratings by detecting the near-field distribution.

© 2005 Chinese Optics Letters

PDF Article

References

  • View by:
  • |
  • |

  1. W. H. F. Talbot, Philos. Mag. 9, 401 (1836).
  2. M. V. Berry and S. Klein, J. Mod. Opt. 43, 2139 (1996).
  3. C. Zhou, S. Stankovic, and T. Tschudi, Appl. Opt. 38, 284 (1999).
  4. C. Zhou, H. Wang, S. Zhao, P. Xi, and L. Liu, Appl. Opt. 40, 607 (2001).
  5. C. Zhou, W. Wang, E. Dai, and L. Liu, Opt. Phot. News (12) 46 (2004).
  6. K. S. Yee, IEEE Trans. Antenna Propag. 14, 302 (1966).
  7. A. Taflove and S. Hagness, Computational Electromagnetics: the Finite-Difference Time Domain Method (2nd edn.) (Artech House, Boston, 2000).
  8. J. W. Wallance and M. A. Jensen, J. Opt. Soc. Am. A 19, 610 (2002).
  9. M. Qi, E. Lidorikis, P. T. Rakich, and S. G. Johnson, Nature 429, 538 (2004).
  10. P. Wei, H. Chou, and Y. Chen, Opt. Lett. 29, 433 (2004).
  11. H. Ichikawa, J. Opt. Soc. Am. A 15, 152 (1998).
  12. H. Ichikawa, J. Opt. Soc. Am. A 16, 299 (1999).

2004 (3)

C. Zhou, W. Wang, E. Dai, and L. Liu, Opt. Phot. News (12) 46 (2004).

M. Qi, E. Lidorikis, P. T. Rakich, and S. G. Johnson, Nature 429, 538 (2004).

P. Wei, H. Chou, and Y. Chen, Opt. Lett. 29, 433 (2004).

2002 (1)

2001 (1)

1999 (2)

1998 (1)

1996 (1)

M. V. Berry and S. Klein, J. Mod. Opt. 43, 2139 (1996).

1966 (1)

K. S. Yee, IEEE Trans. Antenna Propag. 14, 302 (1966).

1836 (1)

W. H. F. Talbot, Philos. Mag. 9, 401 (1836).

Appl. Opt. (2)

IEEE Trans. Antenna Propag. (1)

K. S. Yee, IEEE Trans. Antenna Propag. 14, 302 (1966).

J. Mod. Opt. (1)

M. V. Berry and S. Klein, J. Mod. Opt. 43, 2139 (1996).

J. Opt. Soc. Am. A (3)

Nature (1)

M. Qi, E. Lidorikis, P. T. Rakich, and S. G. Johnson, Nature 429, 538 (2004).

Opt. Lett. (1)

Opt. Phot. News (1)

C. Zhou, W. Wang, E. Dai, and L. Liu, Opt. Phot. News (12) 46 (2004).

Philos. Mag. (1)

W. H. F. Talbot, Philos. Mag. 9, 401 (1836).

Other (1)

A. Taflove and S. Hagness, Computational Electromagnetics: the Finite-Difference Time Domain Method (2nd edn.) (Artech House, Boston, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.