Abstract

A model of a structure consisting of nonperiodic closely spaced metal nanoparticles array, in which electromagnetic energy can be transported and splitted below the diffraction limit, is founded. Based on finite difference time domain (FDTD) algorithm, we analyze the power transmission properties of nonperiodic silver nanoparticles arrays in a dielectric waveguide. The numerical results indicate the structure can split light along the array at the nanometer level with no radiative losses at the discontinuity.

© 2005 Chinese Optics Letters

PDF Article

References

  • View by:
  • |
  • |

  1. H. A. Atwater, SPIE's OE Magazine 2, (7) 42 (2002).
  2. S. A. Maier, M. L. Brongersma, P. G. Kik, and H. A. Atwater, Phys. Rev. B 65, 193408 (2002).
  3. J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, Phys. Rev. Lett. 82, 2590 (1999).
  4. M. L. Brongersma, J. W. Hartman, and H. A. Atwater, Phys. Rev. B 62, 16356 (2000).
  5. T. Liang and R. W. Ziolkowski, Microwave and Opt. Tech. Lett. 17, 17 (1998).
  6. S. T. Chu and S. K. Chaudhuri, J. Lightwave Technol. 7, 2033 (1989).
  7. A. Taflove and S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (2nd edn.) (Arthech House, Boston, 2000).

2002 (2)

H. A. Atwater, SPIE's OE Magazine 2, (7) 42 (2002).

S. A. Maier, M. L. Brongersma, P. G. Kik, and H. A. Atwater, Phys. Rev. B 65, 193408 (2002).

2000 (1)

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, Phys. Rev. B 62, 16356 (2000).

1999 (1)

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, Phys. Rev. Lett. 82, 2590 (1999).

1998 (1)

T. Liang and R. W. Ziolkowski, Microwave and Opt. Tech. Lett. 17, 17 (1998).

1989 (1)

S. T. Chu and S. K. Chaudhuri, J. Lightwave Technol. 7, 2033 (1989).

J. Lightwave Technol. (1)

S. T. Chu and S. K. Chaudhuri, J. Lightwave Technol. 7, 2033 (1989).

Microwave and Opt. Tech. Lett. (1)

T. Liang and R. W. Ziolkowski, Microwave and Opt. Tech. Lett. 17, 17 (1998).

Phys. Rev. B (2)

S. A. Maier, M. L. Brongersma, P. G. Kik, and H. A. Atwater, Phys. Rev. B 65, 193408 (2002).

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, Phys. Rev. B 62, 16356 (2000).

Phys. Rev. Lett. (1)

J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, Phys. Rev. Lett. 82, 2590 (1999).

SPIE's OE Magazine (1)

H. A. Atwater, SPIE's OE Magazine 2, (7) 42 (2002).

Other (1)

A. Taflove and S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (2nd edn.) (Arthech House, Boston, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.