Abstract

Optical coherence tomography (OCT) is a noninvasive cross-sectional imaging modality capable of measuring tissue morphology and function with high spatial resolution. Both the amplitude and the phase of the interometric heterodyne signal can be exploited to obtain the profile of sample reflectivity related to its microstructure and the bi-directional blood flowing velocity information. The fact that the skin and human mucosa have a layer structure suggests that the backscattered signal from tissue arises from two sources. The first is the scattering particles within the tissue. The second is the Fresnel refraction on the interface between two layers. However, the analysis available only considers one aspect of the backscattering sources. In this paper, we report an analysis that is based on the combination of both the particle scattering within the tissue and the Fresnel reflection on the interfaces between two layers. The new model is more reasonable for establishing the relationship between the signal detected by OCT scanner and tissue structures.

© 2005 Chinese Optics Letters

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription