Abstract

A cost-effective technique for in-service chromatic dispersion monitoring in a 40-Gb/s optical communication system is proposed. Microwave devices are adopted to detect the electrical power of a specific frequency band. A simplified theoretical model is proposed and discussed focusing on the relationship between electrical power and chromatic dispersion at different frequency bands. The dynamic monitoring of chromatic dispersion is achievedusing devices such as PIN detector, microwave amplifier, narrow-band microwave filter, and electrical power detector. The maximum detectable chromatic dispersion is 130 ps/nm and a resolution of 5.2 ps/nm/dB has been achieved in the frequency band centered at 12 GHz.

© 2005 Chinese Optics Letters

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription