Abstract

Conventional ultrashort pulsewidth measurement technology is autocorrelation based on second-harmonic generation; however, nonlinear crystals and bulky components are required, which usually leads to the limited wavelength range and the difficult adjustment with free-space light alignment. Here, we proposed a compact all-fiber pulsewidth measurement technology based on the interference jitter (IJ) and field-programmable gate array (FPGA) platform, without requiring a nonlinear optical device (e.g., nonlinear crystal/detector). Such a technology shows a wide measurement waveband from 1 to 2.15 µm at least, a pulsewidth range from femtoseconds to 100 ps, and a small relative error of 0.15%–3.8%. In particular, a minimum pulse energy of 219 fJ is experimentally detected with an average-power-peak-power product of 1.065×10−6W2. The IJ-FPGA technology may offer a new route for miniaturized, user-friendly, and broadband pulsewidth measurement.

© 2022 Chinese Laser Press

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription