Abstract

We show how a non-local quantum controlled-NOT (CNOT) gate with multiple targets can be implemented with unit fidelity and unit probability. The explicit quantum circuit for implementing the operation is presented. Two schemes for probabilistic implementing the operation via partially entangled quantum channels with unit fidelity are put forward. The overall physical resources required for accomplishing these schemes are different, and the successful implementation probabilities are also different.

© 2005 Chinese Optics Letters

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription