Abstract

Expressing the perturbation optical field in terms of module and phase, using the linearized nonlinear Schrodinger equation governing the evolution of perturbations, we have deduced the analytical expressions of the modules, phases, and gain coefficients of the perturbations with zero or cut-off frequency, and studied the evolutions of the two perturbations travelling along lossless optical fibers in the negative dispersion regime. The results indicate that the phase of the perturbation with zero (or cut-off) frequency increases (or decreases) with the propagation distance monotonously and tends to its asymptotic value n?+?/2 (or n?) eventually. The evolution rates of the phases are closely related to the initial phase values. Although the asymptotic values of the field gain coefficients of the above mentioned two perturbations are equal to zero, and the increasing fashion of the modules is different from the familiar exponential type, it still suggests that the perturbations have a divergent nature when the propagation distance goes to infinity, indicating that the two kinds of perturbations can both lead to instability.

© 2005 Chinese Optics Letters

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription