Abstract

A series of highly Er^(3+)/Yb^(3+) co-doped fluoroaluminate glasses have been investigated in order to develop a microchip laser at 1.54 ?m under 980 nm excitation. Measurements of absorption, emission and up-conversion spectra have been performed to examine the effect of Er^(3+)/Yb^(3+) concentration quenching on spectroscopic properties. In the glasses with Er^(3+) concentrations below 10 mol%, concentration quenching is very low and the Er^(3+)/Yb^(3+) co-doped fluoroaluminate glasses have stronger fluorescence of 1.54 ?m due to the ^(4)I_(13/2)-->^(4)I_(15/2) transition than that of Er^(3+) singly-doped glasses. As Er^(3+) concentrations above 10 mol% in the Er^(3+)/Yb^(3+) co-doped samples, concentration quenching of 1.54 ?m does obviously occur as a result of the back energy transfer from Er^(3+) to Yb^(3+). To obtain the highest emission efficiency at 1.54 ?m, the optimum doping-concentration ratio of Er^(3+)/Yb^(3+) was found to be approximately 1:1 in mol fraction when the Er^(3+) concentration is less than 10 mol%.

© 2005 Chinese Optics Letters

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription