Abstract

We experimentally investigate the linear polarization conversion for terahertz (THz) waves in liquid crystal (LC) integrated metamaterials, which consist of an LC layer sandwiched by two orthogonally arranged sub-wavelength metal gratings. A Fabry–Perot-like cavity is well constructed by the front and rear gratings, and it shows a strong local resonance mechanism, which greatly enhances the polarization conversion efficiency. Most importantly, the Fabry–Perot-like resonance can be actively tuned by modulating the refractive index of the middle LC layer under the external field. As a result, the integrated metamaterial achieves multi-band tunable linear polarization conversion.

© 2021 Chinese Laser Press

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription