Abstract

We demonstrate a polarization-insensitive silicon 4×4 optical switch based on Mach–Zehnder interferometer (MZI) switch elements. On-chip polarization controllers are integrated before the switch fabric to automatically adjust an arbitrary input polarization to the transverse electric mode. The 4×4 switch fabric is based on a dilated double-layer network architecture to completely cancel the first-order crosstalk. Thermo-optic phase shifters are integrated in the MZI switch elements and the polarization controllers for adjustment of the switching state and polarization, respectively. We develop a polarization control algorithm based on a gradient descent method for automated polarization control. The polarization recovery time is less than 4 ms, and the measured polarization-dependent loss is ∼2 dB. The scheme provides a new solution for realizing polarization-insensitive silicon optical switches.

© 2021 Chinese Laser Press

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription