Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group
  • Chinese Optics Letters
  • Vol. 18,
  • Issue 9,
  • pp. 092402-
  • (2020)

Active formatting modulation of electromagnetically induced transparency in metamaterials

Not Accessible

Your library or personal account may give you access

Abstract

We experimentally demonstrate for the first time an active all-optical ultrafast modulation of electromagnetically induced transparency-like effect in a hybrid device of sapphire/Si/metamaterial. From numerical simulations, it can be deducted that the tuning process is attributed to the coupling between the dark mode existing in split-ring resonators and the bright mode existing in cut wire resonators. The transmission amplitude modulation is accompanied by the slow-light effect. In addition, the ultrafast formation process is measured to be as fast as 2 ps. This work should make an important contribution to novel chip-scale photonic devices and terahertz communications.

© 2020 Chinese Laser Press

PDF Article
More Like This
Electrically active manipulation of electromagnetic induced transparency in hybrid terahertz metamaterial

Xunjun He, Xingyu Yang, Shaopeng Li, Shuang Shi, Fengmin Wu, and Jiuxing Jiang
Opt. Mater. Express 6(10) 3075-3085 (2016)

Frequency-agile electromagnetically induced transparency analogue in terahertz metamaterials

Quan Xu, Xiaoqiang Su, Chunmei Ouyang, Ningning Xu, Wei Cao, Yuping Zhang, Quan Li, Cong Hu, Jianqiang Gu, Zhen Tian, Abul K. Azad, Jiaguang Han, and Weili Zhang
Opt. Lett. 41(19) 4562-4565 (2016)

Dynamic electromagnetically induced transparency based on a metal-graphene hybrid metamaterial

Chenxi Liu, Peiguo Liu, Cheng Yang, Yue Lin, and Song Zha
Opt. Mater. Express 8(5) 1132-1142 (2018)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.