Abstract

We investigate the influence of the source’s energy fluctuation on both computational ghost imaging and computational ghost imaging via sparsity constraint, and if the reconstruction quality will decrease with the increase of the source’s energy fluctuation. In order to overcome the problem of image degradation, a correction approach against the source’s energy fluctuation is proposed by recording the source’s fluctuation with a monitor before modulation and correcting the echo signal or the intensity of computed reference light field with the data recorded by the monitor. Both the numerical simulation and experimental results demonstrate that computational ghost imaging via sparsity constraint can be enhanced by correcting the echo signal or the intensity of computed reference light field, while only correcting the echo signal is valid for computational ghost imaging.

© 2020 Chinese Laser Press

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription