Abstract

Alloying in two-dimension has been a hot spot in the development of new, versatile systems of optics and electronics. Alloys have been demonstrated to be a fascinating strategy to modulate the chemical and electronic properties of two-dimensional nanosheets. We firstly reported ultra-broadband enhanced nonlinear saturable absorption of Mo0.53W0.47Te2 alloy at 0.6, 1.0, and 2.0 μm. The nonlinear saturable absorption of Mo0.53W0.47Te2 saturable absorber (SA) was measured by the open aperture Z-scan technique. Compared to MoTe2 and WTe2 SAs, the Mo0.53W0.47Te2 SA showed five times deeper modulation depth, 8.6% lower saturable intensity, and one order larger figure of merit. Thus, our research provides a method of alloys to find novel materials with more outstanding properties for optics and optoelectronic applications.

© 2020 Chinese Laser Press

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription