Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Efficient 671 nm red light generation in annealed proton-exchanged periodically poled LiNbO3 waveguides

Not Accessible

Your library or personal account may give you access

Abstract

We report efficient generation of 671 nm red light based on quasi-phase-matched second harmonic generation of 1342 nm in LiNbO3 waveguides. The design method and fabrication process of the high-quality annealed proton-exchanged periodically poled channel waveguides were presented. A continuous-wave 1.71 mW red light was obtained with a single-pass conversion efficiency of 47%·W−1·cm−2, which is 88% that of the theoretical value. While for 1 mW quasi-continuous-laser input, the corresponding peak power being 2 W, the conversion efficiency reached up to 60%. Our results indicate that the annealed proton-exchanged periodically poled LiNbO3 waveguide is promising for high-efficiency and low power consumption nonlinear generation of visible light.

© 2020 Chinese Laser Press

PDF Article
More Like This
Efficient green-light generation by proton-exchanged periodically poled MgO:LiNbO3 ridge waveguide

Jian Sun, Yi Gan, and Changqing Xu
Opt. Lett. 36(4) 549-551 (2011)

Highly efficient second-harmonic generation in buried waveguides formed by annealed and reverse proton exchange in periodically poled lithium niobate

Krishnan R. Parameswaran, Roger K. Route, Jonathan R. Kurz, Rostislav V. Roussev, Martin M. Fejer, and Masatoshi Fujimura
Opt. Lett. 27(3) 179-181 (2002)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.