Abstract

We experimentally demonstrated an approach to generate arbitrary total angular momentum (TAM) states by using two liquid crystal devices. Photons’ TAM, the sum of spin and orbital angular momenta (SAM and OAM) under paraxial approximation, has found many applications in optics and attracted increasing attention in recent years. Our approach is based on the orthogonality of two eigen SAM components, that arbitrary TAM states will be produced through encoding different holograms in one system. The comparison with theoretical predications yields an excellent agreement, including both the separable state and the non-separable state. The proposed scheme takes a step forward for generating complex structured fields and broadens its application to various fields like laser processing and large capacity data transmission.

© 2020 Chinese Laser Press

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription