Abstract

Collinear phase-matching of sum-frequency generation (SFG) has been studied thoroughly previously, while non-collinear schemes are sometimes more flexible in application. However, this phase-matching type is more difficult to meet and control. We employ a convenient method to obtain harmonic generation in bulk potassium dihydrogen phosphate (KDP), using an incident wave vector and a reflected wave vector to create a triangle phase-matching relationship. With a simple, flexible set-up, we can observe 351 nm SFG, and the conversion efficiency is up to ∼3.6% per reflection. Furthermore, we believe this approach has potential application value and improvement space.

© 2019 Chinese Laser Press

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription