Abstract

In this Letter, we propose the electronic manipulation of localized surface plasmon resonance for active tuning in near-field nanofocusing. We theoretically studied the excited graphene tuning of the nanofocusing field in few-layer graphene (FLG)-based hybrid nanotips. It is revealed that the normalized enhanced electric field can be significantly promoted to more than 300 times. It is also observed that resonant peaks can be unprecedently modified by the electron state of excited graphene that is embedded in the substrate. It shows the possibility of flexible tuning of plasmon resonances via controlling the electron excitation state of graphene for specific advanced near-field nanofocusing applications.

© 2019 Chinese Laser Press

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription