Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Soliton mode-locked fiber laser with high-quality MBE-grown Bi2Se3 film

Not Accessible

Your library or personal account may give you access

Abstract

In this work, a soliton mode-locked erbium-doped fiber laser (EDFL) with a high-quality molecular beam epitaxy (MBE)-grown topological insulator (TI) Bi2Se3 saturable absorber (SA) is reported. To fabricate the SA device, a 16-layer Bi2Se3 film was grown successfully on a 100 μm thick SiO2 substrate and sandwiched directly between two fiber ferrules. The TI-SA had a saturable absorption of 1.12% and a saturable influence of 160 MW/cm2. After inserting the TI-SA into the unidirectional ring-cavity EDFL, self-starting mode-locked soliton pulse trains were obtained at a fundamental repetition rate of 19.352 MHz. The output central wavelength, pulse energy, pulse duration, and signal to noise ratio of the radio frequency spectrum were 1530 nm,18.5 pJ, 1.08 ps, and 60 dBm, respectively. These results demonstrate that the MBE technique could provide a controllable and repeatable method for the fabrication of identical high-quality TI-SAs, which is critically important for ultra-fast pulse generation.

© 2019 Chinese Laser Press

PDF Article
More Like This
Output energy enhancement in a mode-locked Er-doped fiber laser using CVD-Bi2Se3 as a saturable absorber

Quanxin Guo, Jie Pan, Yanjun Liu, Haipeng Si, Zhengyi Lu, Xile Han, Jinjuan Gao, Zitan Zuo, Huanian Zhang, and Shouzhen Jiang
Opt. Express 27(17) 24670-24681 (2019)

High-repetition-rate Q-switched fiber laser with high quality topological insulator Bi2Se3 film

Zhenhua Yu, Yanrong Song, Jinrong Tian, Zhiyuan Dou, Heyang Guoyu, Kexuan Li, Hongwei Li, and Xinping Zhang
Opt. Express 22(10) 11508-11515 (2014)

Wavelength-tunable picosecond soliton fiber laser with Topological Insulator: Bi2Se3 as a mode locker

Chujun Zhao, Yanhong Zou, Yu Chen, Zhiteng Wang, Shunbin Lu, Han Zhang, Shuangchun Wen, and Dingyuan Tang
Opt. Express 20(25) 27888-27895 (2012)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.