Abstract

A clock laser based on a 30-cm-long ultrahigh finesse optical cavity was developed to improve the frequency stability of the Sr optical lattice clock at the National Institute of Metrology. Using this clock laser to probe the spin-polarized Sr87 atoms, a Rabi transition linewidth of 1.8 Hz was obtained with 500 ms interrogation time. Two independent digital servos are used to alternatively lock the clock laser to the S01 (mF=+9/2)→P03 (mF=+9/2) transition. The Allan deviation shows that the short-term frequency stability is better than 3.2×10−16 and averages down followed by 1.8×10−15/τ.

© 2018 Chinese Laser Press

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription